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Preface to the Second Edition

The second edition of these notes has been completely rewritten and substantially
expanded with the intention not only to improve the use of the book as an intro-
ductory text to conformal field theory, but also to get in contact with some recent
developments. In this way we take a number of remarks and contributions by read-
ers of the first edition into consideration who appreciated the rather detailed and
self-contained exposition in the first part of the notes but asked for more details for
the second part. The enlarged edition also reflects experiences made in seminars on
the subject.

The interest in conformal field theory has grown during the last 10 years and
several texts and monographs reflecting different aspects of the field have been pub-
lished as, e.g., the detailed physics-oriented introduction of Di Francesco, Mathieu,
and Sénéchal [DMS96*],1 the treatment of conformal field theories as vertex al-
gebras by Kac [Kac98*], the development of conformal field theory in the context
of algebraic geometry as in Frenkel and Ben-Zvi [BF01*] and more general by
Beilinson and Drinfeld [BD04*]. There is also the comprehensive collection of arti-
cles by Deligne, Freed, Witten, and others in [Del99*] aiming to give an introduction
to strings and quantum field theory for mathematicians where conformal field theory
is one of the main parts of the text. The present expanded notes complement these
publications by giving an elementary and comparatively short mathematics-oriented
introduction focusing on some main principles.

The notes consist of 11 chapters organized as before in two parts. The main
changes are two new chapters, Chap. 8 on Wightman’s axioms for quantum field
theory and Chap. 10 on vertex algebras, as well as the incorporation of several new
statements, examples, and remarks throughout the text. The volume of the text of
the new edition has doubled. Half of this expansion is due to the two new chapters.

We have included an exposition of Wightman’s axioms into the notes because the
axioms demonstrate in a convincing manner how a consistent quantum field theory
in principle should be formulated even regarding the fact that no four-dimensional
model with properly interacting fields satisfying the axioms is known to date. We
investigate in Chap. 8 the axioms in their different appearances as postulates on
operator-valued distributions in the relativistic case as well as postulates on the

1 The “∗” indicates that the respective reference has been added to the References in the second
edition of these notes.
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viii Preface to the Second Edition

corresponding correlation functions on Minkowski and on Euclidean spaces. The
presentation of the axioms serves as a preparation and motivation for Chap. 9 as
well as for Chap. 10.

Chapter 9 deals with an axiomatic approach to two-dimensional conformal field
theory. In comparison to the first edition we have added the conformal Ward iden-
tities, the state field correspondence, and some changes with respect to the presen-
tation of the operator product expansion. The concepts and methods in this chapter
were quite isolated in the first edition, and they can now be understood in the context
of Wightman’s axioms in its various forms and they also can be linked to the theory
of vertex algebras.

Vertex algebras have turned out to be extremely useful in many areas of mathe-
matics and physics, and they have become the main language of two-dimensional
conformal field theory in the meantime. Therefore, the new Chap. 10 in these notes
provides a presentation of basic concepts and methods of vertex algebras together
with some examples. In this way, a number of manipulations in Chap. 9 are ex-
plained again, and the whole presentation of vertex algebras in these notes can be
understood as a kind of formal and algebraic continuation of the axiomatic treatment
of conformal field theory.

Furthermore, many new examples have been included which appear at several
places in these notes and may serve as a link between the different viewpoints (for
instance, the Heisenberg algebra H as an example of a central extension of Lie al-
gebras in Chap. 4, as a symmetry algebra in the context of quantization of strings in
Chap. 7, and as a first main example of a vertex algebra in Chap. 10). Similarly, Kac–
Moody algebras are introduced, as well as the free bosonic field and the restricted
unitary group in the context of quantum electrodynamics. Several of the elementary
but important statements of the first edition have been explained in greater detail,
for instance, the fact that the conformal groups of the Euclidean spaces are finite
dimensional, even in the two-dimensional case, the fact that there does not exist a
complex Virasoro group and that the unitary group U(H) of an infinite-dimensional
Hilbert space H is a topological group in the strong topology.

Moreover, several new statements have been included, for instance, about a de-
tailed description of some classical groups, about the quantization of the harmonic
oscillator and about general principles used throughout the notes as, for instance,
the construction of representations of Lie algebras as induced representations or the
use of semidirect products.

The general concept of presenting a rather brief and at the same time rigorous
introduction to conformal field theory is maintained in this second edition as well
as the division of the notes in two parts of a different nature: The first is quite el-
ementary and detailed, whereas the second part requires more mathematical pre-
requisites, in particular, from functional analysis, complex analysis, and complex
algebraic geometry.

Due to the complexity of the treatment of Wightman’s axioms in the second part
of the notes not all results are proven, but there are many more proofs in the second
part than in the original edition. In particular, the chapter on vertex algebras is self-
contained.



Preface to the Second Edition ix

The final chapter on the Verlinde formula in the context of algebraic geometry,
which is now Chap. 11, has nearly not been changed except for a comment on fusion
rings and on the connection of the Verlinde algebra with twisted K-theory recently
discovered by Freed, Hopkins, and Teleman [FHT03*].

In a brief appendix we mention further developments with respect to boundary
conformal field theory, to stochastic Loewner evolution, and to modularity together
with some references.

München, March 2008 Martin Schottenloher
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Preface to the First Edition

The present notes consist of two parts of approximately equal length. The first part
gives an elementary, detailed, and self-contained mathematical exposition of clas-
sical conformal symmetry in n dimensions and its quantization in two-dimensions.
Central extensions of Lie groups and Lie algebras are studied in order to explain
the appearance of the Virasoro algebra in the quantization of two-dimensional con-
formal symmetry. The second part surveys some topics related to conformal field
theory: the representation theory of the Virasoro algebra, some aspects of confor-
mal symmetry in string theory, a set of axioms for a two-dimensional conformally
invariant quantum field theory, and a mathematical interpretation of the Verlinde
formula in the context of semi-stable holomorphic vector bundles on a Riemann
surface. In contrast to the first part only few proofs are provided in this less elemen-
tary second part of the notes.

These notes constitute – except for corrections and supplements – a translation
of the prepublication “Eine mathematische Einführung in die konforme Feldtheo-
rie” in the preprint series Hamburger Beiträge zur Mathematik, Volume 38 (1995).
The notes are based on a series of lectures I gave during November/December
of 1994 while holding a Gastdozentur at the Mathematisches Seminar der Uni-
versität Hamburg and on similar lectures I gave at the Université de Nice during
March/April 1995.

It is a pleasure to thank H. Brunke, R. Dick, A. Jochens, and P. Slodowy for var-
ious helpful comments and suggestions for corrections. Moreover, I want to thank
A. Jochens for writing a first version of these notes and for carefully preparing the
LATEX file of an expanded English version. Finally, I would like to thank the Springer
production team for their support.

Munich, September 1996 Martin Schottenloher
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Introduction

Conformal field theory in two dimensions has its roots in statistical physics
(cf. [BPZ84] as a fundamental work and [Gin89] for an introduction) and it has close
connections to string theory and other two-dimensional field theories in physics (cf.,
e.g., [LPSA94]). In particular, all massless fields are conformally invariant.

The special feature of conformal field theory in two dimensions is the existence
of an infinite number of independent symmetries of the system, leading to corre-
sponding invariants of motion which are also called conserved quantities. This is
the content of Noether’s theorem which states that a symmetry of a physical system
given by a local one-parameter group or by an infinitesimal version thereof induces
an invariant of motion of the system. Any collection of invariants of motion simpli-
fies the system in question up to the possibility of obtaining a complete solution. For
instance, in a typical system of classical mechanics an invariant of motion reduces
the number of degrees of freedom. If the original phase space has dimension 2n the
application of an invariant of motion leads to a system with a phase space of dimen-
sion 2(n−1). In this way, an independent set of n invariants of motion can lead to a
zero-dimensional phase space that means, in general, to a complete solution.

Similarly, in the case of conformal field theory the invariants of motion which are
induced by the infinitesimal conformal symmetries reduce the infinite dimensional
system completely. As a consequence, the structure constants which determine the
system can be calculated explicitly, at least in principle, and one obtains a complete
solution. This is explained in Chap. 9, in particular in Proposition 9.12.

These symmetries in a conformal field theory can be understood as infinitesimal
conformal symmetries of the Euclidean plane or, more generally, of surfaces with
a conformal structure, that is Riemann surfaces. Since conformal transformations
on an open subset U of the Euclidean plane are angle preserving, the conformal
orientation-preserving transformations on U are holomorphic functions with respect
to the natural complex structure induced by the identification of the Euclidean plane
with the space C of complex numbers. As a consequence, there is a close connection
between conformal field theory and function theory. A good portion of conformal
field theory is formulated in terms of holomorphic functions using many results of
function theory. On the other hand, this interrelation between conformal field theory
and function theory yields remarkable results on moduli spaces of vector bundles

Schottenloher, M.: Introduction. Lect. Notes Phys. 759, 1–3 (2008)
DOI 10.1007/978-3-540-68628-6 1 c© Springer-Verlag Berlin Heidelberg 2008



2 Introduction

over compact Riemann surfaces and therefore provides an interesting example of
how physics can be applied to mathematics.

The original purpose of the lectures on which the present text is based was to
describe and to explain the role the Virasoro algebra plays in the quantization of
conformal symmetries in two dimensions. In view of the usual difficulties of a math-
ematician reading research articles or monographs on conformal field theory, it was
an essential concern of the lectures not to rely on background knowledge of standard
methods in physics. Instead, the aim was to try to present all necessary concepts and
methods on a purely mathematical basis. This explains the adjective “mathemati-
cal” in the title of these notes. Another motivation was to discuss the sometimes
confusing use of language by physicists, who for example emphasize that the group
of holomorphic maps of the complex plane is infinite dimensional – which is not
true. What is meant by this statement is that a certain Lie algebra closely related to
conformal symmetry, namely the Witt algebra or its central extension, the Virasoro
algebra, is infinite dimensional.

Clearly, with these objectives the lectures could hardly cover an essential part of
actual conformal field theory. Indeed, in the course of the present text, conformally
invariant quantum field theory does not appear before Chap. 6, which treats the rep-
resentation theory of the Virasoro algebra as a first topic of conformal field theory.
These notes should therefore be seen as a preparation for or as an introduction to
conformal field theory for mathematicians focusing on some background material in
geometry and algebra. Physicists may find the detailed investigation in Part I useful,
where some elementary geometric and algebraic prerequisites for conformal field
theory are studied, as well as the more advanced mathematical description of fun-
damental structures and principles in the context of quantum field theory in Part II.

In view of the above-mentioned tasks, it makes sense to start with a detailed de-
scription of the conformal transformations in arbitrary dimensions and for arbitrary
signatures (Chap. 1) and to determine the associated conformal groups (Chap. 2)
with the aid of the conformal compactification of spacetime. In particular, the con-
formal group of the Minkowski plane turns out to be infinite dimensional, it is es-
sentially isomorphic to Diff+(S1)×Diff+(S1), while the conformal group of the
Euclidean plane is finite-dimensional, it is the group of Möbius transformations iso-
morphic to SL(2,C)/{±1}.

The next two chapters (Chaps. 3 and 4) are concerned with central extensions of
groups and Lie algebras and their classification by cohomology. These two chapters
contain several examples appearing in physics and mathematics. Central extensions
are needed in physics, because the symmetry group of a quantized system usually
is a central extension of (the universal covering of) the classical symmetry group,
and in the same way the infinitesimal symmetry algebra of the quantum system is,
in general, a central extension of the classical symmetry algebra.

Chapter 5 leads to the Virasoro algebra as the unique nontrivial central extension
of the Witt algebra. The Witt algebra is the essential component of the classical
infinitesimal conformal symmetry in two dimensions for the Euclidean plane as
well as for the Minkowski plane. This concludes the first part of the text which is
comparatively elementary except for some aspects in the examples.
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The second part presents several different approaches to conformal field theory.
We start this program with the representation theory of the Virasoro algebra includ-
ing the Kac formula (Chap. 6) in order to describe the unitary representations.

In Chap. 7 we give an elementary introduction into the quantization of the
bosonic string and explain how the conformal symmetry is present in classical and
in quantized string theory. The quantization induces a natural representation of the
Virasoro algebra on the Fock space of the Heisenberg algebra which is of interest in
later considerations concerning examples of vertex algebras.

The next two chapters are dedicated to axiomatic quantum field theory. In Chap. 8
we provide an exposition of the relativistic case in any dimension by presenting the
Wightman axioms for the field operators as well as the equivalent axioms for the
correlation functions called Wightman distributions. The Wightman distributions
are boundary values of holomorphic functions which can be continued analytically
into a large domain in complexified spacetime and thereby provide the correlation
functions of a Euclidean version of the axioms, the Osterwalder–Schrader axioms.
In Chap. 9 we concentrate on the two-dimensional Euclidean case with confor-
mal symmetry. We aim to present an axiomatic approach to conformal field theory
along the suggestion of [FFK89] and the postulates of the groundbreaking paper of
Belavin, Polyakov, and Zamolodchikov [BPZ84].

Many papers on conformal field theory nowadays use the language of vertex
operators and vertex algebras. Chapter 10 gives a brief introduction to the basic
concepts of vertex algebras and some fundamental results. Several concepts and
constructions reappear in this chapter – sometimes in a slightly different form – so
that one has a common view of the different approaches to conformal field theory
presented in the preceding chapters.

Finally we discuss the Verlinde formula as an application of conformal field the-
ory to mathematics (Chap. 11).
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Chapter 1
Conformal Transformations
and Conformal Killing Fields

This chapter presents the notion of a conformal transformation on general semi-
Riemannian manifolds and gives a complete description of all conformal transfor-
mations on an open connected subset M ⊂ R

p,q in the flat spaces R
p,q. Special

attention is given to the two-dimensional cases, that is to the Euclidean plane R
2,0

and to the Minkowski plane R1,1.

1.1 Semi-Riemannian Manifolds

Definition 1.1. A semi-Riemannian manifold is a pair (M,g) consisting of a smooth1

manifold M of dimension n and a smooth tensor field g which assigns to each point
a ∈M a nondegenerate and symmetric bilinear form on the tangent space TaM:

ga : TaM×TaM → R.

In local coordinates x1, . . . ,xn of the manifold M (given by a chart φ : U →V on an
open subset U in M with values in an open subset V ⊂R

n, φ(a) = (x1(a), . . . ,xn(a)),
a ∈M) the bilinear form ga on TaM can be written as

ga(X ,Y ) = gμν(a)XμY ν .

Here, the tangent vectors X = Xμ∂μ , Y = Y ν∂ν ∈ TaM are described with respect to
the basis

∂μ :=
∂
∂xμ

, μ = 1, . . . ,n,

of the tangent space TaM which is induced by the chart φ .
By assumption, the matrix

(gμν(a))

is nondegenerate and symmetric for all a ∈U , that is one has

1 We restrict our study to smooth (that is to C ∞ or infinitely differentiable) mappings and mani-
folds.

Schottenloher, M.: Conformal Transformations and Conformal Killing Fields. Lect. Notes
Phys. 759, 7–21 (2008)
DOI 10.1007/978-3-540-68628-6 1 c© Springer-Verlag Berlin Heidelberg 2008
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det(gμν(a)) �= 0 and (gμν(a))T = (gμν(a)).

Moreover, the differentiability of g implies that the matrix (gμν(a)) depends dif-
ferentiably on a. This means that in its dependence on the local coordinates x j the
coefficients gμν = gμν(x) are smooth functions.

In general, however, the condition gμν(a)XμXν > 0 does not hold for all X �= 0,
that is the matrix (gμν(a)) is not required to be positive definite. This property dis-
tinguishes Riemannian manifolds from general semi-Riemannian manifolds. The
Lorentz manifolds are specified as the semi-Riemannian manifolds with (p,q) =
(n−1,1) or (p,q) = (1,n−1).

Examples:

• R
p,q = (Rp+q,gp,q) for p,q ∈ N where

gp,q(X ,Y ) :=
p

∑
i=1

XiY i−
p+q

∑
i=p+1

XiY i.

Hence
(
gμν
)

=

(
1p 0

0 −1q

)

= diag(1, . . . ,1,−1, . . . ,−1).

• R
1,3 or R

3,1: the usual Minkowski space.
• R

1,1: the two-dimensional Minkowski space (the Minkowski plane).
• R

2,0: the Euclidean plane.
• S

2 ⊂ R
3,0: compactification of R

2,0; the structure of a Riemannian manifold on
the 2-sphere S

2 is induced by the inclusion in R
3,0.

• S× S ⊂ R
2,2: compactification of R

1,1. More precisely, S× S ⊂ R
2,0 ×R

0,2 ∼=
R

2,2 where the first circle S = S
1 is contained in R

2,0, the second one in R
0,2 and

where the structure of a semi-Riemannian manifold on S×S is induced by the
inclusion into R

2,2.
• Similarly, S

p×S
q ⊂ R

p+1,0×R
0,q+1 ∼= R

p+1,q+1, with the p-sphere S
p = {X ∈

R
p+1 : gp+1,0(X ,X) = 1} ⊂ R

p+1,0 and the q-sphere S
q ⊂ R

0,q+1, as a gener-
alization of the previous example, yields a compactification of R

p,q for p,q ≥
1. This compact semi-Riemannian manifold will be denoted by S

p,q for all
p,q≥ 0.

In the following, we will use the above examples of semi-Riemannian manifolds
and their open subspaces only—except for the quadrics N p,q occurring in Sect. 2.1.
(These quadrics are locally isomorphic to S

p,q from the point of view of conformal
geometry.)
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1.2 Conformal Transformations

Definition 1.2. Let (M,g) and (M′,g′) be two semi-Riemannian manifolds of the
same dimension n and let U ⊂M,V ⊂M′ be open subsets of M and M′, respectively.
A smooth mapping ϕ : U → V of maximal rank is called a conformal transforma-
tion, or conformal map, if there is a smooth function Ω : U → R+ such that

ϕ∗g′ =Ω2g ,

where ϕ∗g′(X ,Y ) := g′(Tϕ(X),Tϕ(Y )) and Tϕ : TU → TV denotes the tangent
map (derivative) of ϕ . Ω is called the conformal factor of ϕ . Sometimes a confor-
mal transformation ϕ : U → V is additionally required to be bijective and/or orien-
tation preserving.

In local coordinates of M and M′

(ϕ∗g′)μν(a) = g′i j(ϕ(a))∂μϕ i∂νϕ j.

Hence, ϕ is conformal if and only if

Ω2gμν = (g′i j ◦ϕ)∂μϕ i∂νϕ j (1.1)

in the coordinate neighborhood of each point.
Note that for a conformal transformation ϕ the tangent maps Taϕ : TaM →

Tϕ(a)M
′ are bijective for each point a ∈ U . Hence, by the inverse mapping theo-

rem a conformal transformation is always locally invertible as a smooth map.

Examples:

• Local isometries, that is smooth mappings ϕ with ϕ∗g′ = g, are conformal trans-
formations with conformal factor Ω= 1.

• In order to study conformal transformations on the Euclidean plane R
2,0 we iden-

tify R
2,0 ∼= C and write z = x + iy for z ∈ C with “real coordinates” (x,y) ∈ R.

Then a smooth map ϕ : M → C on a connected open subset M ⊂ C is conformal
according to (1.1) with conformal factor Ω : M →R+ if and only if for u = Reϕ
and v = Imϕ

u2
x + v2

x =Ω2 = u2
y + v2

y �= 0 , uxuy + vxvy = 0. (1.2)

These equations are, of course, satisfied by the holomorphic (resp. antiholo-
morphic) functions from M to C because of the Cauchy–Riemann equations
ux = vy,uy = −vx (resp. ux = −vy,uy = vx) if u2

x + v2
x �= 0. For holomorphic or

antiholomorphic functions, u2
x + v2

x �= 0 is equivalent to detDϕ �= 0 where Dϕ
denotes the Jacobi matrix representing the tangent map Tϕ of ϕ .

Conversely, for a general conformal transformation ϕ = (u,v) the equations
(1.2) imply that (ux,vx) and (uy,vy) are perpendicular vectors in R

2,0 of equal
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length Ω �= 0. Hence, (ux,vx) = (−vy,uy) or (ux,vx) = (vy,−uy), that is ϕ is
holomorphic or antiholomorphic with nonvanishing detDϕ .

As a first important result, we have shown that the conformal transformations
ϕ : M → C with respect to the Euclidean structure on M ⊂ C are the locally
invertible holomorphic or antiholomorphic functions. The conformal factor of ϕ
is |detDϕ|.

• With the same identification R
2,0 ∼= C a linear map ϕ : R

2,0 → R
2,0 with repre-

senting matrix

A = Aϕ =
(

a b
c d

)

is conformal if and only if a2 +c2 �= 0 and a = d, b =−c or a =−d, b = c. As a
consequence, for ζ = a+ ic �= 0, ϕ is of the form z �→ ζ z or z �→ ζ z.

These conformal linear transformations are angle preserving in the following
sense: for points z,w ∈ C\{0} the number

ω(z,w) :=
zw
|zw|

determines the (Euclidean) angle between z and w up to orientation. In the case
of ϕ(z) = ζ z it follows that

ω(ϕ(z),ϕ(w)) =
ζ zζw
|ζ zζw| = ω(z,w),

and the same holds for ϕ(z) = ζ z.
Conversely, the linear maps ϕ with ω(ϕ(z),ϕ(w)) = ω(z,w) for all z,w ∈

C\{0} or ω(ϕ(z),ϕ(w)) =−ω(z,w) for all z,w ∈ C\{0} are conformal trans-
formations. We conclude that an R-linear map ϕ : R

2,0 → R
2,0 is a conformal

transformation for the Euclidean plane if and only if it is angle preserving.
• We have shown that an orientation-preserving R-linear map ϕ : R

2,0 → R
2,0 is

a conformal transformation for the Euclidean plane if and only if it is the mul-
tiplication with a complex number ζ �= 0: z �→ ζ z. In the case of ζ = r exp iα
with r ∈ R+ and with α ∈ ]0,2π], we obtain the following interpretation: α in-
duces a rotation with angle α and z �→ (exp iα)z is an isometry, while r induces
a dilatation z �→ rz.

Consequently, the group of orientation-preserving R-linear and conformal
maps R

2,0 → R
2,0 is isomorphic to R+×S ∼= C\{0}. The group of orientation-

preserving R-linear isometries is isomorphic to S while the group of dilatations
is isomorphic to R+ (with the multiplicative structure) and therefore isomorphic
to the additive group R via t → r := exp t, t ∈ R.

• The above considerations also show that the conformal transformations ϕ : M →
C, where M is an open subset of R

2,0, can also be characterized as those map-
pings which preserve the angles infinitesimally: let z(t),w(t) be smooth curves
in M with z(0) = w(0) = a and ż(0) �= 0 �= ẇ(0), where ż(0) = d

dt z(t)|t=0 is the
derivative of z(t) at t = 0. Then ω(ż(0), ẇ(0)) determines the angle between the
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curves z(t) and w(t) at the common point a. Let zϕ = ϕ ◦ z and wϕ = ϕ ◦w be
the image curves. By definition, ϕ is called to preserve angles infinitesimally
if and only if ω(ż(0), ẇ(0)) = ω(żϕ(0), ẇϕ(0)) for all points a ∈ M and all
curves z(t),w(t) in M through a = z(0) = w(0) with ż(0) �= 0 �= ẇ(0). Note that
żϕ(0) = Dϕ(a)(ż(0)) by the chain rule. Hence, by the above characterization of
the linear conformal transformations, ϕ preserves angles infinitesimally if and
only if Dϕ(a) is a linear conformal transformation for all a ∈ M which by (1.2)
is equivalent to ϕ being a conformal transformation.

• Again in the case of R
2,0 ∼= C one can deduce from the above results that the

conformal, orientation-preserving, and bijective transformations R
2,0 →R

2,0 are
the entire holomorphic functions ϕ : C→ C with holomorphic inverse functions
ϕ−1 : C → C, that is the biholomorphic functions ϕ : C → C. These functions
are simply the complex-linear affine maps of the form

ϕ(z) = ζ z+ τ, z ∈ C,

with ζ ,τ ∈ C, ζ �= 0.
The group of all conformal, orientation-preserving invertible transformations

R
2,0 → R

2,0 of the Euclidean plane can thus be identified with (C \ {0})×C,
where the group law is given by

(ζ ,τ)(ζ ′,τ ′) = (ζζ ′,ζτ ′+ τ).

In particular, this group is a four-dimensional real manifold.
This is an example of a semidirect product of groups. See Sect. 3.1 for the

definition.
• The orientation-preserving and R-linear conformal transformations ψ : R

1,1 →
R

1,1 can be identified by elementary matrix multiplication. They are represented
by matrices of the form

A = Aψ = A(s, t) = exp t

(
coshs sinhs
sinhs coshs

)

with (s, t) ∈ R
2 (see Corollary 1.14 for details).

• Consider R
2 endowed with the metric on R

2 given by the bilinear form

〈(x,y),(x′,y′)〉 :=
1
2
(xy′+ yx′).

This is a Minkowski metric g on R
2, for which the coordinate axes coincide with

the light cone
L = {(x,y) : 〈(x,y),(x,y)〉= 0}

in 0 ∈ R
2. With this metric, (R2,g) is isometrically isomorphic to R

1,1 with re-
spect to the isomorphism ψ : R

1,1 → R
2,

(x,y) �→ (x+ y,x− y).
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• The stereographic projection

π : S
2 \{(0,0,1)} → R

2,0,

(x,y,z) �→ 1
1− z

(x,y)

is conformal with Ω = 1
1−z . In order to prove this it suffices to show that the

inverse map ϕ := π−1 : R
2,0 → S

2 ⊂R
3,0 is a conformal transformation. We have

ϕ(ξ ,η) =
1

1+ r2 (2ξ ,2η ,r2−1),

for (ξ ,η) ∈ R
2 and r =

√
ξ 2 +η2. For the tangent vectors X1 = ∂

∂ξ ,X2 = ∂
∂η

we get

Tϕ(X1) =
d
dt
ϕ(ξ + t,η)|t=0

= 2

(
1

1+ r2

)2

(r2 +1−2ξ 2,−2ξη ,2ξ ),

Tϕ(X2) = 2

(
1

1+ r2

)2

(−2ξη ,r2 +1−2η2,2η).

Hence

g′(Tϕ(Xi),Tϕ(Xj)) =
(

2
1+ r2

)2

(δi j),

that is Λ = 2
1+r2 is the conformal factor of ϕ . Thus, π = ϕ−1 has the conformal

factor Ω= Λ−1 = 1
2 (1+ r2) = 1

1−z .
Similarly, the stereographic projection of the n-sphere,

π : S
n \{(0, . . . ,0,1)}→ R

n,0,

(x0, . . . ,xn) �→ 1
1− xn (x0, . . . ,xn−1),

is a conformal map.
• In Proposition 2.5 we present another natural conformal map in detail, the con-

formal embedding
τ : R

p,q → S
p×S

q ⊂ R
p+1,q+1

into the non-Riemannian version of S
p×S

q. S
p×S

q has been described in the
preceding section.

• The composition of two conformal maps is conformal.
• If ϕ : M → M′ is a bijective conformal transformation with conformal factor Ω

then ϕ is a diffeomorphism (that is ϕ−1 is smooth) and, moreover, ϕ−1 : M′ →
M is conformal with conformal factor 1

Ω . This property has been used in the
investigation of the above example on the stereographic projection.
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1.3 Conformal Killing Fields

In the following, we want to study the conformal maps ϕ : M → M′ between open
subsets M,M′ ⊂ R

p,q, p + q = n > 1. To begin with, we will classify them by an
infinitesimal argument:

Let X : M ⊂ R
p,q → R

n be a smooth vector field. Then

γ̇ = X(γ)

for smooth curves γ = γ(t) in M is an autonomous differential equation. The local
one-parameter group (ϕX

t )t∈R corresponding to X satisfies

d
dt

(ϕX (t,a)) = X(ϕX (t,a))

with initial condition ϕX (0,a) = a. Moreover, for every a∈U , ϕX (·,a) is the unique
maximal solution of γ̇ = X(γ) defined on the maximal interval ]t−a , t+a [. Let Mt :=
{a ∈ M : t−a < t < t+a } and ϕX

t (a) := ϕX (t,a) for a ∈ Mt . Then Mt ⊂ M is an open
subset of M and ϕX

t : Mt → M−t is a diffeomorphism. Furthermore, we have ϕX
t ◦

ϕX
s (a) = ϕX

s+t(a) if a ∈Mt+s∩Ms and ϕX
s (a) ∈Mt , and, of course, ϕX

0 = idM,M0 =
M. In particular, the local one-parameter group (ϕX

t )t∈R satisfies the flow equation

d
dt

(ϕX
t )|t=0 = X .

Definition 1.3. A vector field X on M ⊂ R
p,q is called a conformal Killing field if

ϕX
t is conformal for all t in a neighborhood of 0.

Theorem 1.4. Let M ⊂ R
p,q be open, g = gp,q and X a conformal Killing field with

coordinates
X = (X1, . . . ,Xn) = Xν∂ν

with respect to the canonical cartesian coordinates on R
n. Then there is a smooth

function κ : M → R, so that

Xμ,ν +Xν ,μ = κgμν .

Here we use the notation: f ,ν := ∂ν f , Xμ := gμνXν .

Proof. Let X be a conformal Killing field, (ϕt) the associated local one-parameter
group, and Ωt : Mt → R

+, such that

(ϕ∗t g)μν(a) = gi j(ϕt(a))∂μϕ i
t ∂νϕ

j
t = (Ωt(a))2gμν(a).

By differentiation with respect to t at t = 0 we get (gi j is constant!)
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d
dt

(Ω2
t (a)gμν(a))|t=0 =

d
dt

(gi j(ϕt(a))∂μϕ i
t ∂νϕ

j
t )
∣
∣
∣
t=0

= gi j∂μϕ̇ i
0 ∂νϕ

j
0 +gi j∂μϕ i

0 ∂ν ϕ̇
j

0

= gi j ∂μXi(a)δ j
ν +gi j δ i

μ ∂νX j(a)

= ∂μXν(a)+∂νXμ(a).

Hence, the statement follows with κ(a) =
d
dt

Ω2
t (a)
∣
∣
t=0 . �

If gμν is not constant, we have

(LX g)μν = Xμ;ν +Xν ;μ = κgμν .

Here, LX is the Lie derivative and a semicolon in the index denotes the covariant
derivative corresponding to the Levi-Civita connection for g.

Definition 1.5. A smooth function κ : M ⊂ R
p,q → R is called a conformal Killing

factor if there is a conformal Killing field X , such that

Xμ,ν +Xν ,μ = κgμν .

(Similarly, for general semi-Riemannian manifolds on coordinate neighborhoods:

Xμ;ν +Xν ;μ = κgμν .)

Theorem 1.6. κ : M → R is a conformal Killing factor if and only if

(n−2)κ,μν +gμνΔgκ = 0,

where Δg = gkl∂k∂l is the Laplace–Beltrami operator for g = gp,q.

Proof. “⇒”: Let κ : M→R and Xμ,ν +Xν ,μ = κgμν (M⊂R
p,q,g = gp,q). Then from

∂k∂l(Xμ,ν) = ∂ν∂k(Xμ,l), etc.,

it follows that

0 = ∂k∂l(Xμ,ν +Xν ,μ)−∂l∂μ(Xk,ν +Xν ,k)
+∂μ∂ν(Xk,l +Xl,k)−∂ν∂k(Xμ,l +Xl,μ).

Since κ is a conformal Killing factor, one can deduce

∂k∂l(Xμ,ν +Xν ,μ) = κ,kl gμν , etc.

Hence
0 = gμν κ,kl −gkν κ,lμ +gkl κ,μν −gμl κ,νk.

By multiplication with gkl (defined by gμλgλν = δ μν ) we get
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0 = gklgμν κ,kl −gklgkν κ,lμ +gklgkl κ,μν −gklgμl κ,νk

= gkl(gμν κ,kl)−δ l
ν κ,lμ +nκ,μν −δ k

μ κ,lμ

= gμνΔgκ+(n−2)κ,μν .

The reverse implication “⇐” follows from the discussion in Sect. 1.4. �
The theorem also holds for open subsets M in semi-Riemannian manifolds with “;”
instead of “,”.

Important Observation. In the case n = 2, κ is conformal if and only if Δgκ = 0.
For n > 2, however, there are many additional conditions. More precisely, these are

κ,μν = 0 for μ �= ν ,

κ,μμ = ±(n−2)−1Δgκ.

1.4 Classification of Conformal Transformations

With the help of the implication “⇒” of Theorem 1.6, we will determine all confor-
mal Killing fields and hence all conformal transformations on connected open sets
M ⊂ R

p,q.

1.4.1 Case 1: n = p+q > 2

From the equations gμμ(n−2)κ,μμ +Δgκ = 0 for a conformal Killing factor κ we
get (n− 2)Δgκ + nΔgκ = 0 by summation, hence Δgκ = 0 (as in the case n = 2).
Using again gμμ(n− 2)κ,μμ + Δgκ = 0, it follows that κ,μμ = 0. Consequently,
κ,μν = 0 for all μ ,ν . Hence, there are constants αμ ∈ R such that

κ,μ(q1, . . . ,qn) = αμ , μ = 1, . . . ,n.

It follows that the solutions of (n−2)κ,μν +gμνΔgκ = 0 are the affine-linear maps

κ(q) = λ +ανqν , q = (qν) ∈M ⊂ R
n,

with λ ,αν ∈ R.
To begin with a complete description of all conformal Killing fields on connected

open subsets M ⊂R
p,q, p+q > 2, we first determine the conformal Killing fields X

with conformal Killing factor κ = 0 (that is the proper Killing fields, which belong
to local isometries). Xμ,μ +Xμ,μ = 0 means that Xμ does not depend on qμ . Xμ,ν +
Xν ,μ = 0 implies Xμ

,ν = 0. Thus Xμ can be written as

Xμ(q) = cμ +ωμ
ν qν

with cμ ∈ R, ωμ
ν ∈ R.
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If all the coefficients ωμ
ν vanish, the vector field Xμ(q) = cμ determines the differ-

ential equation
q̇ = c,

with the (global) one-parameter group ϕX (t,q) = q + tc as its flow. The associated
conformal transformation (ϕX (t,q) for t = 1) is the translation

ϕc(q) = q+ c.

For c = 0 and general ω = (ωμ
ν ) the equations

Xμ,ν +Xν ,μ = gμνκ = 0

imply

gνρ ω
ρ
μ +gμρ ω

ρ
ν = 0,

that is ωT g + gω = 0. Hence, these solutions are given by the elements of the Lie
algebra o(p,q) := {ω :ωT gp,q +gp,qω = 0}. The associated conformal transforma-
tions (ϕX (t,q) = etωq for t = 1 ) are the orthogonal transformations

ϕΛ : R
p,q → R

p,q, q �→ Λq,

with

Λ= eω ∈ O(p,q) := {Λ ∈ R
n×n : ΛT gp,qΛ= gp,q}

(equivalently, O(p,q) = {Λ∈R
n×n : 〈Λx,Λx′〉= 〈x,x′〉}with the symmetric bilinear

form 〈·, ·〉 given by gp,q).
We have thus determined all local isometries on connected open subsets M ⊂

R
p,q. They are the restrictions of maps

ϕ(q) = ϕΛ(q)+ c, Λ ∈ O(p,q), c ∈ R
n,

and form a finite-dimensional Lie group, the group of motions belonging to gp,q.
This group can also be described as a semidirect product (cf. Sect. 3.1) of O(p,q)
and R

n.
The constant conformal Killing factors κ = λ ∈ R \ {0} correspond to the con-

formal Killing fields X(q) = λq belonging to the conformal transformations

ϕ(q) = eλq, q ∈ R
n,

which are the dilatations.
All the conformal transformations on M ⊂ R

p,q considered so far have a unique
conformal continuation to R

p,q. Hence, they are essentially conformal transforma-
tions on all of R

p,q associated to global one-parameter groups (ϕt). This is no longer
true for the following conformal transformations.
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In view of the preceding discussion, every conformal Killing factor κ �= 0 with-
out a constant term is linear and thus can be written as

κ(q) = 4〈q,b〉, q ∈ R
n,

with b ∈ R
n \{0} and 〈q,b〉= gp,q

μν qμbν . A direct calculation shows that

Xμ(q) := 2〈q,b〉qμ −〈q,q〉bμ , q ∈ R
n,

is a solution of Xμ,ν + Xν ,μ = κgμν . (This proves the implication “⇐” in Theo-
rem 1.6 for n > 2.) As a consequence, for every conformal Killing field X with
conformal Killing factor

κ(q) = λ + xμqμ = λ +4〈q,b〉,

the vector field Y (q) = X(q)−2〈q,b〉qμ−〈q,q〉bμ−λq is a conformal Killing field
with conformal Killing factor 0. Hence, by the preceding discussion, it has the form
Y (q) = c+ωq. To sum up, we have proven

Theorem 1.7. Every conformal Killing field X on a connected open subset M of
R

p,q (in case of p+q = n > 2) is of the form

X(q) = 2〈q,b〉qμ −〈q,q〉bμ +λq+ c+ωq

with suitable b,c ∈ R
n, λ ∈ R and ω ∈ o(p,q).

Exercise 1.8. The Lie bracket of two conformal Killing fields is a conformal Killing
field. The Lie algebra of all the conformal Killing fields is isomorphic to o(p + 1,
q+1) (cf. Exercise 1.10).

The conformal Killing field X(q) = 2〈q,b〉q−〈q,q〉b, b �= 0, has no global one-
parameter group of solutions for the equation q̇ = X(q). Its solutions form the fol-
lowing local one-parameter group

ϕt(q) =
q−〈q,q〉tb

1−2〈q, tb〉+ 〈q,q〉〈tb, tb〉 , t ∈ ]t−q , t+q [ ,

where ]t−q , t+q [ is the maximal interval around 0 contained in

{ t ∈ R|1−2〈q, tb〉+ 〈q,q〉〈tb, tb〉 �= 0}.

Hence, the associated conformal transformation ϕ := ϕ1

ϕ(q) =
q−〈q,q〉b

1−2〈b,q〉+ 〈q,q〉〈b,b〉

– which is called a special conformal transformation – has (as a map into R
p,q) a

continuation at most to Mt at t = 1, that is to
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M = M1 := {q ∈ R
p,q|1−2〈b,q〉+ 〈q,q〉〈b,b〉 �= 0}. (1.3)

In summary, we have

Theorem 1.9. Every conformal transformation ϕ : M → R
p,q, n = p + q ≥ 3, on a

connected open subset M ⊂ R
p,q is a composition of

• a translation q �→ q+ c, c ∈ R
n,

• an orthogonal transformation q �→ Λq, Λ ∈ O(p,q),
• a dilatation q �→ eλq, λ ∈ R, and
• a special conformal transformation

q �→ q−〈q,q〉b
1−2〈q,b〉+ 〈q,q〉〈b,b〉 , b ∈ R

n.

To be precise, we have just shown that every conformal transformation ϕ : M →
R

p,q on a connected open subset M ⊂ R
p,q, p+q > 2, which is an element ϕ = ϕt0

of a one-parameter group (ϕt) of conformal transformations, is of the type stated in
the theorem. (Then Λ is an element of SO(p,q), where SO(p,q) is the component
containing the identity 1 = id in O(p,q).) The general case can be derived from this.

Exercise 1.10. The conformal transformations described in Theorem 1.9 form a
group with respect to composition (in spite of the singularities, it is not a subgroup
of the bijections R

n →R
n), which is isomorphic to O(p+1,q+1)

/
{±1} (cf. The-

orem 2.9).

1.4.2 Case 2: Euclidean Plane (p = 2, q = 0)

This case has already been discussed as an example (cf. 1.2).

Theorem 1.11. Every holomorphic function

ϕ = u+ iv : M → R
2,0 ∼= C

on an open subset M ⊂ R
2,0 with nowhere-vanishing derivative is an orientation-

preserving conformal mapping with conformal Killing factor Ω2 = u2
x + u2

y =
detDϕ = |ϕ ′|2. Conversely, every conformal and orientation-preserving transfor-
mation ϕ : M → R

2,0 ∼= C is such a holomorphic function.

This follows immediately from the Cauchy–Riemann differential equations
(cf. 1.2). Of course, a corresponding result holds for the antiholomorphic functions.
In the case of a connected open subset M of the Euclidean plane the collection of
all the holomorphic and antiholomorphic functions exhausts the conformal transfor-
mations on M.

We want to describe the conformal transformations again by analyzing confor-
mal Killing fields and conformal Killing factors: Every conformal Killing field
X = (u,v) : M → C on a connected open subset M of C with conformal Killing
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factor κ satisfies Δκ = 0 as well as uy + vx = 0 and ux = 1
2κ = vy. In particular, X

fulfills the Cauchy–Riemann equations and is a holomorphic function.
In the special case of a conformal Killing field corresponding to a vanishing

conformal Killing factor κ = 0, one gets

X(z) = c+ iθz, z ∈M,

with c∈C and θ ∈R. Here we again use the notation z = x+ iy∈C∼= R
2,0. The re-

spective conformal transformations are the Euclidean motions (that is the isometries
of R

2,0)
ϕ(z) = c+ eiθ z.

For constant conformal Killing factors κ �= 0, κ = λ ∈ R, one gets the dilatations

X(z) = λ z with ϕ(z) = eλ z .

Moreover, for R-linear κ in the form κ = 4Re(zb̄) = 4(xb1 + yb2) one gets the
“inversions”. For instance, in the case of b = (b1,b2) = (1,0) we obtain

ϕ(z) =
z−|z|2

1−2x+ |z|2 =
−1+2x−|z|2− x+1+ iy

|z−1|2

= −1− z−1
|z−1|2 =− z

z−1
.

We conclude

Proposition 1.12. The linear conformal Killing factors κ describe precisely the
Möbius transformations (cf. 2.12).

For general conformal Killing factors κ �= 0 on a connected open subset M of
the complex plane, the equation Δκ = 0 implies that locally there exist holomorphic
X = (u,v) with uy + vx = 0, ux = 1

2κ = vy, that is

ux = vy , uy =−vx.

(This proves the implication “⇐” in Theorem 1.6 for p = 2,q = 0, if one lo-
calizes the definition of a conformal Killing field.) In this situation, the one-
parameter groups (ϕt) for X are also holomorphic functions with nowhere-vanishing
derivative.

1.4.3 Case 3: Minkowski Plane (p = q = 1)

In analogy to Theorem 1.11 we have

Theorem 1.13. A smooth map ϕ = (u,v) : M → R
1,1 on a connected open subset

M ⊂ R
1,1 is conformal if and only if

u2
x > v2

x , and ux = vy,uy = vx or ux =−vy,uy =−vx.
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Proof. The condition ϕ∗g =Ω2g for g = g1,1 is equivalent to the equations

u2
x − v2

x =Ω2, uxuy− vxvy = 0, u2
y − v2

y =−Ω2, Ω2 > 0.

“⇐” : these three equations imply u2
x =Ω2 + v2

x > v2
x and

0 = Ω2 +2uxuy−2vxvy−Ω2 = (ux +uy)2− (vx + vy)2.

Hence ux +uy =±(vx + vy). In the case of the sign “+” it follows that

0 = u2
x −u2

x + vxvy−uxuy

= u2
x −ux(ux +uy)+ vxvy

= u2
x −ux(vx + vy)+ vxvy

= (ux− vx)(ux− vy),

that is ux = vx or ux = vy. ux = vx is a contradiction to u2
x − v2

x =Ω2 > 0. Therefore
we have ux = vy and uy = vx.

Similarly, the sign “−” yields ux =−vy and uy =−vx.
“⇒” : with Ω2 := u2

x − v2
x > 0 we get by substitution

u2
y − v2

y = v2
x −u2

x = −Ω2 and uxuy− vxvy = 0.

Hence ϕ is conformal. In the case of ux = vy,uy = vx it follows that

detDϕ = uxvy−uyvx = u2
x − v2

x > 0,

that is ϕ is orientation preserving. In the case of ux = −vy,uy = −vx the map ϕ
reverses the orientation. �

The solutions of the wave equation Δκ = κxx−κyy = 0 in 1 + 1 dimensions can
be written as

κ(x,y) = f (x+ y)+g(x− y)

with smooth functions f and g of one real variable in the light cone variables x+ =
x + y , x− = x− y. Hence, any conformal Killing factor κ has this form in the case
of p = q = 1. Let F and G be integrals of 1

2 f and 1
2 g, respectively. Then

X(x,y) = (F(x+)+G(x−),F(x+)−G(x−))

is a conformal Killing field with Xμ,ν + Xν ,μ = gμνκ . (This eventually completes
the proof of the implication “⇐” in Theorem 1.6.) The associated one-parameter
group (ϕt) of conformal transformations consists of orientation-preserving maps
with ux = vy, uy = vx for ϕt = (u,v).

Corollary 1.14. The orientation-preserving linear and conformal maps ψ : R
1,1 →

R
1,1 have matrix representations of the form

A = Aψ = A+(s, t) = exp t

(
coshs sinhs
sinhs coshs

)
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or

A = Aψ = A−(s, t) = exp t

(
−coshs sinhs

sinhs −coshs

)

with (s, t) ∈ R
2.

Proof. Let Aψ be the matrix representing ψ = (u,v) with respect to the standard
basis in R

2:

Aψ =
(

a b
c d

)
.

Then u = ax + by , v = cx + dy , hence ux = a,uy = b,vx = c,vy = d. Our Theo-
rem 1.13 implies a2 > c2 and a = d,b = c (the choice of the sign comes from
detA > 0). There is a unique t ∈R with exp2t = a2−c2 and also a unique s∈R with
sinhs = (exp−t)c, hence c2 = exp2t sinh2 s. It follows a2 = exp2t(1 + sinh2 s) =
(exp t coshs)2, and we conclude a = exp t coshs = d or a =−exp t coshs = d , and
b = exp t sinhs = d. �

There is again an interpretation of the action of t (dilatation) and s (boost) similar
to the Euclidean case.

The representation in Corollary 1.14 respects the composition: The well-known
identities for sinh and cosh imply A+(s, t)A+(s′, t ′) = A+(s+ s′, t + t ′).

Remark 1.15. As a consequence, the identity component of the group of linear con-
formal mappings R

1,1 → R
1,1 is isomorphic to the additive group R

2. Moreover,
the Lorentz group L = L(1,1) (the identity component of the linear isometries) is
isomorphic to R. The corresponding Poincaré group P = P(1,1) is the semidirect
product L �R

2 ∼= R�R
2 with respect to the action R→ GL(2,R) , s �→ A+(s,0).



Chapter 2
The Conformal Group

Definition 2.1. The conformal group Conf (Rp,q) is the connected component con-
taining the identity in the group of conformal diffeomorphisms of the conformal
compactification of R

p,q.

In this definition, the group of conformal diffeomorphisms is considered as a topo-
logical group with the topology of compact convergence, that is the topology of uni-
form convergence on the compact subsets. More precisely, the topology of compact
convergence on the space C (X ,Y ) of continuous maps X → Y between topological
spaces X ,Y is generated by all the subsets

{ f ∈ C (X ,Y ) : f (K)⊂V},

where K ⊂ X is compact and V ⊂ Y is open.
First of all, to understand the definition we have to introduce the concept of con-

formal compactification. The conformal compactification as a hyperquadric in five-
dimensional projective space has been used already by Dirac [Dir36*] in order to
study conformally invariant field theories in four-dimensional spacetime. The con-
cept has its origin in general geometric principles.

2.1 Conformal Compactification of RRR
p,q

To study the collection of all conformal transformations on an open connected sub-
set M ⊂ R

p,q, p + q ≥ 2, a conformal compactification N p,q of R
p,q is introduced,

in such a way that the conformal transformations M → R
p,q become everywhere-

defined and bijective maps N p,q → N p,q. Consequently, we search for a “minimal”
compactification N p,q of R

p,q with a natural semi-Riemannian metric, such that ev-
ery conformal transformation ϕ : M → R

p,q has a continuation to N p,q as a confor-
mal diffeomorphism ϕ̂ : N p,q → N p,q (cf. Definition 2.7 for details).

Note that conformal compactifications in this sense do only exist for p + q > 2.
We investigate the two-dimensional case in detail in the next two sections below. We
show that the spaces N p,q still can be defined as compactifications of R

p,q, p+q = 2,
with a natural conformal structure inducing the original conformal structure on R

p,q.

Schottenloher, M.: The Conformal Group. Lect. Notes Phys. 759, 23–38 (2008)
DOI 10.1007/978-3-540-68628-6 3 c© Springer-Verlag Berlin Heidelberg 2008
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However, the spaces N p,q do not possess the continuation property mentioned above
in full generality: there exist many conformal transformations ϕ : M → R

p,q which
do not have a conformal continuation to all of N p,q.

Let n = p+q≥ 2. We use the notation 〈x〉p,q := gp,q(x,x), x∈R
p,q. For short, we

also write 〈x〉= 〈x〉p,q if p and q are evident from the context. R
p,q can be embedded

into the (n+1)-dimensional projective space Pn+1(R) by the map

ı : R
p,q → Pn+1(R),

x = (x1, . . . ,xn) �→
(

1−〈x〉
2

: x1 : . . . : xn :
1+ 〈x〉

2

)
.

Recall that Pn+1(R) is the quotient

(Rn+2 \{0})
/
∼

with respect to the equivalence relation

ξ ∼ ξ ′ ⇐⇒ ξ = λξ ′ for a λ ∈ R\{0}.

Pn+1(R) can also be described as the space of one-dimensional subspaces of
R

n+2. Pn+1(R) is a compact (n + 1)-dimensional smooth manifold (cf. for exam-
ple [Scho95]). If γ : R

n+2 \ {0} → Pn+1(R) is the quotient map, a general point
γ(ξ ) ∈ Pn+1(R), ξ = (ξ 0, . . . ,ξ n+1) ∈R

n+2, is denoted by (ξ 0 : . . . : ξ n+1) := γ(ξ )
with respect to the so-called homogeneous coordinates. Obviously, we have

(ξ 0 : · · · : ξ n+1) = (λξ 0 : · · · : λξ n+1) for all λ ∈ R\{0}.

We are looking for a suitable compactification of R
p,q. As a candidate we consider

the closure ı(Rp,q) of the image of the smooth embedding ı : R
p,q → Pn+1(R).

Remark 2.2. ı(Rp,q) = N p,q, where Np,q is the quadric

N p,q := {(ξ 0 : · · · : ξ n+1) ∈ Pn+1(R)
∣
∣〈ξ 〉p+1,q+1 = 0}

in the real projective space Pn+1(R).

Proof. By definition of ı we have 〈ı(x)〉p+1,q+1 = 0 for x ∈ R
p,q, that is ı(Rp,q) ⊂

N p,q.
For the converse inclusion, let (ξ 0 : · · · : ξ n+1)∈N p,q \ ı(Rp,q). Then ξ 0 +ξ n+1 = 0,
since

ı(λ−1(ξ 1, . . . ,ξ n)) = (ξ 0 : · · · : ξ n+1) ∈ ı(Rp,q)

for λ := ξ 0 +ξ n+1 �= 0. Given (ξ 0 : · · · : ξ n+1) ∈ N p,q there always exist sequences
εk → 0, δk → 0 with εk �= 0 �= δk and 2ξ 1εk +ε2

k = 2ξ n+1δk +δ 2
k . For p≥ 1 we have

Pk := (ξ 0 : ξ 1 + εk : ξ 2 : · · · : ξ n : ξ n+1 +δk) ∈ N p,q.
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Moreover, ξ 0 + ξ n+1 + δk = δk �= 0 implies Pk ∈ ı(Rp,q). Finally, since Pk → (ξ 0 :
. . . : ξ n+1) for k → ∞ it follows that (ξ 0 : · · · : ξ n+1) ∈ ı(Rp,q), that is N p,q ⊂
ı(Rp,q). �

We therefore choose N p,q as the underlying manifold of the conformal compactifi-
cation. N p,q is a regular quadric in Pn+1(R). Hence it is an n-dimensional compact
submanifold of Pn+1(R). N p,q contains ı(Rp,q) as a dense subset.

We get another description of N p,q using the quotient map γ on R
p+1,q+1

restricted to S
p×S

q ⊂ R
p+1,q+1.

Lemma 2.3. The restriction of γ to the product of spheres

S
p×S

q :=

{

ξ ∈ R
n+2 :

p

∑
j=0

(ξ j)2 = 1 =
n+1

∑
j=p+1

(ξ j)2

}

⊂ R
n+2

gives a smooth 2-to-1 covering

π := γ|Sp×Sq : S
p×S

q → N p,q.

Proof. Obviously γ(Sp × S
q) ⊂ N p,q. For ξ ,ξ ′ ∈ S

p × S
q it follows from γ(ξ ) =

γ(ξ ′) that ξ = λξ ′ with λ ∈ R \ {0}. ξ ,ξ ′ ∈ S
p×S

q implies λ ∈ {1,−1}. Hence,
γ(ξ ) = γ(ξ ′) if and only if ξ = ξ ′ or ξ =−ξ ′. For P = (ξ 0 : . . . : ξ n+1) ∈ N p,q the
two inverse images with respect to π can be specified as follows: P ∈ N p,q implies
〈ξ 〉= 0, that is ∑p

j=0 (ξ j)2 = ∑n+1
j=p+1 (ξ j)2. Let

r :=

(
p

∑
j=0

(ξ j)2

) 1
2

and η := 1
r (ξ

0, . . . ,ξ n+1) ∈ S
p×S

q. Then η and −η are the inverse images of ξ .
Hence, π is surjective and the description of the inverse images shows that π is a
local diffeomorphism. �

With the aid of the map π : S
p×S

q → N p,q, which is locally a diffeomorphism, the
metric induced on S

p × S
q by the inclusion S

p × S
q ⊂ R

p+1,q+1, that is the semi-
Riemannian metric of S

p,q described in the examples of Sect. 1.1 on page 8, can be
carried over to N p,q in such a way that π : S

p,q → N p,q becomes a (local) isometry.

Definition 2.4. N p,q with this semi-Riemannian metric will be called the conformal
compactification of R

p,q.

In particular, it is clear what the conformal transformations N p,q → N p,q are. In
this way, N p,q obtains a conformal structure (that is the equivalence class of semi-
Riemannian metrics).

We know that ı : R
p,q → N p,q is an embedding (injective and regular) and that

ı(Rp,q) is dense in the compact manifold N p,q. In order to see that this embedding
is conformal we compare ı with the natural map τ : R

p,q → S
p×S

q defined by
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τ(x) =
1

r(x)

(
1−〈x〉

2
,x1, . . . ,xn,

1+ 〈x〉
2

)
,

where

r(x) =
1
2

√

1+2
n

∑
j=1

(x j)2 + 〈x〉2 ≥ 1
2
.

τ is well-defined because of

r(x)2 =
(

1−〈x〉
2

)2

+
p

∑
j=1

(x j)2 =
n

∑
j=p+1

(x j)2 +
(

1+ 〈x〉
2

)2

,

and we have

Proposition 2.5. τ : R
p,q → S

p×S
q is a conformal embedding with ı = π ◦ τ .

Proof. For the proof we only have to confirm that τ is indeed a conformal map. This
can be checked in a similar manner as in the case of the stereographic projection on
p. 12 in Chap. 1. We denote the factor 1

r by ρ and will observe that the result is
independent of the special factor in question. For an index 1 ≤ i ≤ n we denote
by τi,ρi the partial derivatives with respect to the coordinate xi of R

p,q. We have
for i≤ p

τi =
(
ρi

1−〈x〉
2

−ρxi,ρix
1, . . .ρix

i +ρ, . . . ,ρix
n,ρi

1+ 〈x〉
2

+ρxi
)

and a similar formula for j > p with only two changes in signs. For i≤ p we obtain
in R

p+1,q+1

〈τi,τi〉 =
(
ρi

1−〈x〉
2

−ρxi
)2

+(ρix
1)2 + . . .+(ρix

i +ρ)2 +

+ . . .− (ρix
n)2−
(
ρi

1+ 〈x〉
2

+ρxi
)2

= −2ρi

(
ρi
〈x〉
2

+ρxi
)

+(ρix
1)2 + . . .+(ρix

i)2 +2ρix
1ρ+

+ρ2− (ρix
p+1)2 . . .− (ρix

n)2

= −ρ2
i 〈x〉+ρ2

i 〈x〉−2ρix
1ρ+2ρix

1ρ
= ρ2,

and for j > p we obtain 〈τ j,τ j〉 = −ρ2 in the same way. Similarly, one checks
〈τi,τ j〉 = 0 for i �= j. Hence, 〈τi,τ j〉 = ρ2ηi j where η = diag(1, . . .1,−1, . . . ,−1)
is the diagonal matrix of the standard Minkowski metric of R

p,q. This property is
equivalent to τ being a conformal map. �

We now want to describe the collection of all conformal transformations Np,q →
Np,q.
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Theorem 2.6. For every matrix Λ ∈ O(p+1,q+1) the map ψ = ψΛ : N p,q → N p,q

defined by

ψΛ(ξ 0 : . . . : ξ n+1) := γ(Λξ ), (ξ 0 : . . . : ξ n+1) ∈ N p,q

is a conformal transformation and a diffeomorphism. The inverse transformation
ψ−1 = ψΛ−1 is also conformal. The map Λ �→ ψΛ is not injective. However, ψΛ =
ψΛ′ implies Λ= Λ′ or Λ=−Λ′.

Proof. For ξ ∈ R
n+2 \ {0} with 〈x〉 = 0 and Λ ∈ O(p + 1,q + 1) we have 〈Λξ 〉 =

g(Λξ ,Λξ ) = g(ξ ,ξ ) = 〈ξ 〉 = 0, that is γ(Λξ ) ∈ N p,q. γ(Λξ ) does not depend on
the representative ξ as we can easily check: ξ ∼ ξ ′, that is ξ ′ = rξ with r ∈R\{0},
implies Λξ ′ = rΛξ , that is Λξ ′ ∼ Λξ . Altogether, ψ : N p,q → N p,q is well-defined.
Because of the fact that the metric on R

p+1,q+1 is invariant with respect to Λ, ψΛ
turns out to be conformal. For P∈N p,q one calculates the conformal factorΩ 2(P) =

∑n+1
j=0 (Λ j

kξ
k)

2
if P is represented by ξ ∈ S

p × S
q. (In general, Λ(Sp × S

q) is not
contained in S

p ×S
q, and the (punctual) deviation from the inclusion is described

precisely by the conformal factor Ω(P):

1
Ω(P)

Λ(ξ ) ∈ S
p×S

q for ξ ∈ S
p×S

q and P = γ(ξ ).

Obviously, ψΛ = ψ−Λ and ψ−1
Λ = ψΛ−1 . In the case ψΛ = ψΛ′ for Λ,Λ′ ∈ O(p +

1,q + 1) we have γ(Λξ ) = γ(Λ′ξ ) for all ξ ∈ R
n+2 with 〈ξ 〉 = 0. Hence, Λ = rΛ′

with r ∈ R\{0}. Now Λ,Λ′ ∈ O(p+1,q+1) implies r = 1 or r =−1. �

The requested continuation property for conformal transformations can now be
formulated as follows:

Definition 2.7. Let ϕ : M → R
p,q be a conformal transformation on a connected

open subset M ⊂ R
p,q. Then ϕ̂ : N p,q → N p,q is called a conformal continuation of

ϕ , if ϕ̂ is a conformal diffeomorphism (with conformal inverse) and if ı(ϕ(x)) =
ϕ̂(ı(x)) for all x ∈M. In other words, the following diagram is commutative:

Remark 2.8. In a more conceptual sense the notion of a conformal compactifica-
tion should be defined and used in the following general formulation. A conformal
compactification of a connected semi-Riemannian manifold X is a compact semi-
Riemannian manifold N together with a conformal embedding ı : X → N such that
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1. ı(X) is dense in N.
2. Every conformal transformation ϕ : M → X (that ϕ is injective and conformal)

on an open and connected subset M ⊂ X ,M �= /0, has a conformal continuation
ϕ̂ : N → N.

A conformal compactification is unique up to isomorphism if it exists.
In the case of X = R

p,q the construction of ı : R
p,q → N p,q so far together with

Theorem 2.9 asserts that N p,q is indeed a conformal compactification in this general
sense.

2.2 The Conformal Group of RRR
p,q for p+q > 2> 2> 2

Theorem 2.9. Let n = p + q > 2. Every conformal transformation on a connected
open subset M ⊂ R

p,q has a unique conformal continuation to N p,q. The group of
all conformal transformations N p,q → N p,q is isomorphic to O(p+1,q+1)/{±1}.
The connected component containing the identity in this group – that is, by Defi-
nition 2.1 the conformal group Conf(Rp,q) – is isomorphic to SO(p + 1,q + 1) (or
SO(p+1,q+1)/{±1} if −1 is in the connected component of O(p+1,q+1) con-
taining 1, for example, if p and q are odd.)

Here, SO(p + 1,q + 1) is defined to be the connected component of the identity
in O(p+1,q+1). SO(p+1,q+1) is contained in

{Λ ∈ O(p+1,q+1)|detΛ= 1}.

However, it is, in general, different from this subgroup, e.g., for the case (p,q) =
(2,1) or (p,q) = (3,1).

Proof. It suffices to find conformal continuations ϕ̂ to N p,q (according to Defini-
tion 2.7) of all the conformal transformations ϕ described in Theorem 1.9 and to rep-
resent these continuations by matrices Λ∈O(p+1,q+1) according to Lemma 2.3:

1. Orthogonal transformations. The easiest case is the conformal continuation of an
orthogonal transformation ϕ(x) = Λ′x represented by a matrix Λ′ ∈ O(p,q) and
defined on all of R

p,q. For the block matrix

Λ=

⎛

⎜
⎝

1 0 0

0 Λ′ 0

0 0 1

⎞

⎟
⎠ ,

one obviously has Λ ∈ O(p + 1,q + 1), because of ΛTηΛ = η , where η =
diag(1, . . . ,1,−1, . . . ,−1) is the matrix representing gp+1,q+1. Furthermore,

Λ ∈ SO(p+1,q+1)⇐⇒ Λ′ ∈ SO(p,q).
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We define a conformal map ϕ̂ : N p,q → N p,q by ϕ̂ := ψΛ, that is

ϕ̂(ξ 0 : . . . : ξ n+1) = (ξ 0 : Λ′ξ : ξ n+1)

for (ξ 0 : . . . : ξ n+1) ∈ N p,q (cf. Theorem 2.6). For x ∈ R
p,q we have

ϕ̂(ı(x)) =
(

1−〈x〉
2

: Λ′x :
1+ 〈x〉

2

)

=
(

1−〈Λ′x〉
2

: Λ′x :
1+ 〈Λ′x〉

2

)
,

since Λ′ ∈O(p,q) implies 〈x〉= 〈Λ′x〉. Hence, ϕ̂(ı(x)) = ı(ϕ(x)) for all x∈R
p,q.

2. Translations. For a translation ϕ(x) = x+ c, c ∈ R
n, one has the continuation

ϕ̂(ξ 0 : . . . : ξ n+1) := (ξ 0−〈ξ ′,c〉−ξ+〈c〉 : ξ ′+2ξ+c

: ξ n+1 + 〈ξ ′,c〉+ξ+〈c〉)

for (ξ 0 : . . . : ξ n+1) ∈ N p,q. Here,

ξ+ =
1
2
(ξ n+1 +ξ 0) and ξ ′ = (ξ 1, . . . ,ξ n).

We have

ϕ̂(ı(x)) =
(

1−〈x〉
2

−〈x,c〉− 〈c〉
2

: x+ c :
1+ 〈x〉

2
+ 〈x,c〉+ 〈c〉

2

)
,

since ı(x)+ = 1
2 , and therefore

ϕ̂(ı(x)) =
(

1−〈x+ c〉
2

: x+ c :
1+ 〈x+ c〉

2

)
= ı(ϕ(x)).

Since ϕ̂ =ψΛ withΛ∈ SO(p+1,q+1) can be shown as well, ϕ̂ is a well-defined
conformal map, that is a conformal continuation of ϕ . The matrix we look for can
be found directly from the definition of ϕ̂ . It can be written as a block matrix:

Λc =

⎛

⎜
⎝

1− 1
2 〈c〉 −(η ′c)T − 1

2 〈c〉
c En c

1
2 〈c〉 (η ′c)T 1+ 1

2 〈c〉

⎞

⎟
⎠ .

Here, En is the (n×n) unit matrix and

η ′ = diag(1, . . . ,1,−1, . . . ,−1)

is the (n×n) diagonal matrix representing gp,q. The proof of Λc ∈O(p+1,q+1)
requires some elementary calculation. Λc ∈ SO(p + 1,q + 1) can be shown by
looking at the curve t �→ Λtc connecting En+2 and Λc.
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3. Dilatations. The following matrices belong to the dilatations ϕ(x) = rx, r ∈ R+:

Λr =

⎛

⎜
⎝

1+r2

2r 0 1−r2

2r

0 En 0
1−r2

2r 0 1+r2

2r

⎞

⎟
⎠

(Λr ∈ O(p+1,q+1) requires a short calculation again).
Λr ∈ SO(p+1,q+1) follows as above using the curve t �→ Λtr. The conformal
transformation ϕ̂ = ψΛ actually is a conformal continuation of ϕ , as can be seen
by substitution:

ϕ̂(ξ 0 : . . . : ξ n+1)

=
(

1+ r2

2r
ξ 0 +

1− r2

2r
ξ n+1 : ξ ′ :

1+ r2

2r
ξ n+1 +

1− r2

2r
ξ 0
)

=
(

1+ r2

2
ξ 0 +

1− r2

2
ξ n+1 : rξ ′ :

1+ r2

2
ξ n+1 +

1− r2

2
ξ 0
)

.

For ξ = ı(x), that is ξ ′ = x, ξ 0 = 1
2 (1−〈x〉), ξ n+1 = 1

2 (1+ 〈x〉), one has

ϕ̂(ı(x)) =
(

1−〈x〉r2

2
: rx :

1+ 〈x〉r2

2

)

=
(

1−〈rx〉
2

: rx :
1+ 〈rx〉

2

)
= ı(ϕ(x)).

4. Special conformal transformations. Let b ∈ R
n and

ϕ(x) =
x−〈x〉b

1−2〈x,b〉+ 〈x〉〈b〉 , x ∈M1 � R
p,q.

With N = N(x) = 1−2〈x,b〉+ 〈x〉〈b〉 the equation 〈ϕ(x)〉= 〈x〉
N implies

ı(ϕ(x)) =
(

1−〈ϕ(x)〉
2

:
x−〈x〉b

N
:

1+ 〈ϕ(x)〉
2

)

=
(

N−〈x〉
2

: x−〈x〉b :
N + 〈x〉

2

)
.

This expression also makes sense for x ∈ R
p,q with N(x) = 0. It furthermore

leads to the continuation

ϕ̂(ξ 0 : . . . : ξ n+1) = (ξ 0−〈ξ ′,b〉+ξ−〈b〉 : ξ ′ −2ξ−b

: ξ n+1−〈ξ ′,b〉+ξ−〈b〉),

where ξ− = 1
2 (ξ n+1−ξ 0). Because of ı(x)− = 1

2 〈x〉, one finally gets
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ϕ̂(ı(x)) =
(

N−〈x〉
2

: x−〈x〉b :
N + 〈x〉

2

)
= ı(ϕ(x))

for all x ∈ R
p,q, N(x) �= 0. The mapping ϕ̂ is conformal, since ϕ̂ = ψΛ with

Λ=

⎛

⎝
1− 1

2 〈b〉 −(η ′b)T 1
2 〈b〉

b En −b
− 1

2 〈b〉 −(η ′b)T 1+ 1
2 〈b〉

⎞

⎠ ∈ SO(p+1,q+1).

In particular, ϕ̂ is a conformal continuation of ϕ .
To sum up, for all conformal transformations ϕ on open connected M ⊂R

p,q we
have constructed conformal continuations in the sense of Definition 2.7 ϕ̂ : N p,q →
N p,q of the type ϕ̂(ξ 0 : . . . : ξ n+1) = γ(Λξ ) with Λ ∈ SO(p + 1,q + 1) having a
conformal inverse ϕ̂−1 = ψΛ−1 . The map ϕ �→ ϕ̂ turns out to be injective (at least
if ϕ is conformally continued to a maximal domain M in R

p,q, that is M = R
p,q or

M = M1, cf. Theorem 1.9). Conversely, every conformal transformation ψ : N p,q →
N p,q is of the type ψ = ϕ̂ with a conformal transformation ϕ on R

p,q, since there
exist open nonempty subsets U,V ⊂ ı(Rp,q) with ψ(U) = V and the map

ϕ := ı−1 ◦ψ ◦ ı : ı−1(U)→ ı−1(V )

is conformal, that is ϕ has a conformal continuation ϕ̂ , which must be equal to
ψ . Furthermore, the group of conformal transformations N p,q → N p,q is isomor-
phic to O(p+1,q+1)/{±1}, since ϕ̂ can be described by the uniquely determined
set {Λ,−Λ} of matrices in O(p + 1,q + 1). This is true algebraically in the first
place, but it also holds for the topological structures. Finally, this implies that the
connected component containing the identity in the group of all conformal trans-
formations N p,q → N p,q, that is the conformal group Conf (Rp,q), is isomorphic to
SO(p+1,q+1). This completes the proof of the theorem. �

2.3 The Conformal Group of RRR
2,0

By Theorem 1.11, the orientation-preserving conformal transformations ϕ : M →
R

2,0 ∼= C on open subsets M ⊂ R
2,0 ∼= C are exactly those holomorphic functions

with nowhere-vanishing derivative. This immediately implies that a conformal com-
pactification according to Remark 2.2 and Definition 2.7 cannot exist, because there
are many noninjective conformal transformations, e.g.,

C\{0}→ C, z �→ zk, for k ∈ Z\{−1,0,1}.

There are also many injective holomorphic functions without a suitable holomor-
phic continuation, like

z �→
√

z, z ∈ {w ∈ C : Rew > 0},
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or the principal branch of the logarithm on the plane that has been slit along the
negative real axis C \ {−x : x ∈ R+}. However, there is a useful version of the
ansatz from Sect. 2.3 for the case p = 2,q = 0, which leads to a result similar to
Theorem 2.9.

Definition 2.10. A global conformal transformation on R
2,0 is an injective holomor-

phic function, which is defined on the entire plane C with at most one exceptional
point.

The analysis of conformal Killing factors (cf. Sect. 1.4.2) shows that the global
conformal transformations and all those conformal transformations, which admit a
(necessarily unique) continuation to a global conformal transformation are exactly
the transformations which have a linear conformal Killing factor or can be written
as a composition of a transformation having a linear conformal Killing factor with a
reflection z �→ z. Using this result, the following theorem can be proven in the same
manner as Theorem 2.9.

Theorem 2.11. Every global conformal transformation ϕ on M ⊂ C has a unique
conformal continuation ϕ̂ : N2,0 →N2,0, where ϕ̂ = ϕΛ with Λ∈O(3,1). The group
of conformal diffeomorphisms ψ : N2,0 → N2,0 is isomorphic to O(3,1)

/
{±1} and

the connected component containing the identity is isomorphic to SO(3,1).

In view of this result, it is justified to call the connected component containing
the identity the conformal group Conf(R2,0) of R

2,0. Another reason for this comes
from the impossibility of enlarging this group by additional conformal transforma-
tions discussed below.

A comparison of Theorems 2.9 and 2.11 shows the following exceptional situ-
ation of the case p + q > 2: every conformal transformation, which is defined on
a connected open subset M ⊂ R

p,q, is injective and has a unique continuation to
a global conformal transformation. (A global conformal transformation in the case
of R

p,q, p + q > 2, is a conformal transformation ϕ : M → R
p,q, which is defined

on the entire set R
p,q with the possible exception of a hyperplane. By the results

of Sect. 1.4.2, the domain M of definition of a global conformal transformation is
M = R

p,q or M = M1, see (1.3).)
Now, N2,0 is isometrically isomorphic to the 2-sphere S

2 (in general, one has
N p,0 ∼= S

p, since S
p×S

0 = S
p×{1,−1}) and hence N2,0 is conformally isomorphic

to the Riemann sphere P := P1(C).

Definition 2.12. A Möbius transformation is a holomorphic function ϕ , for which
there is a matrix

(
a b
c d

)
∈ SL(2,C) such that ϕ(z) =

az+b
cz+d

,cz+d �= 0.

The set Mb of these Möbius transformations is precisely the set of all orientation-
preserving global conformal transformations (in the sense of Definition 2.10). Mb
forms a group with respect to composition (even though it is not a subgroup of the
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bijections of C). For the exact definition of the group multiplication of ϕ and ψ
one usually needs a continuation of ϕ ◦ψ (cf. Lemma 2.13). This group operation
coincides with the matrix multiplication in SL(2,C). Hence, Mb is also isomorphic
to the group PSL(2,C) := SL(2,C)

/
{±1}. Moreover, by Theorem 2.11, Mb is

isomorphic to the group of orientation-preserving and conformal diffeomorphisms
of N2,0 ∼= P, that is Mb is isomorphic to the group Aut(P) of all biholomorphic maps
ψ : P → P of the Riemann sphere P. This transition from the group Mb to Aut(P)
using the compactification C→ P has been used as a model for the compactification
N p,q of R

p,q and the respective Theorem 2.9. Theorem 2.11 says even more: Mb
is also isomorphic to the proper Lorentz group SO(3,1). An interpretation of the
isomorphism Aut(P) ∼= SO(3,1) from a physical viewpoint was given by Penrose,
cf., e.g., [Scho95, p. 210]. In summary, we have

Mb∼= PSL(2,C)∼= Aut(P)∼= SO(3,1)∼= Conf(R2,0).

2.4 In What Sense Is the Conformal Group Infinite Dimensional?

We have seen in the preceding section that from the point of view of mathematics
the conformal group of the Euclidean plane or the Euclidean 2-sphere is the group
Mb∼= SO(3,1) of Möbius transformations.

However, throughout physics texts on two-dimensional conformal field theory
one finds the claim that the group G of conformal transformations on R

2,0 is infinite
dimensional, e.g.,

“The situation is somewhat better in two dimensions. The main reason is that the con-
formal group is infinite dimensional in this case; it consists of the conformal analytical
transformations. . .” and later “. . .the conformal group of the 2-dimensional space consists
of all substitutions of the form

z �→ ξ (z), z �→ ξ (z),

where ξ and ξ are arbitrary analytic functions.” [BPZ84, p. 335]

“Two dimensions is an especially promising place to apply notions of conformal field in-
variance, because there the group of conformal transformations is infinite dimensional. Any
analytical function mapping the complex plane to itself is conformal.” [FQS84, p. 420]

“The conformal group in 2-dimensional Euclidean space is infinite dimensional and has an
algebra consisting of two commuting copies of the Virasoro algebras.” [GO89, p. 333]

At first sight, the statements in these citations seem to be totally wrong. For instance,
the class of all holomorphic (that is analytic) and injective functions z �→ ξ (z) does
not form a group – in contradiction to the first citation – since for two general holo-
morphic functions f : U →V , g : W → Z with open subsets U,V,W,Z ⊂C, the com-
position g ◦ f can be defined at best if f (U)∩W �= /0. Moreover, the non injective
holomorphic functions are not invertible. If we restrict ourselves to the set J of all
injective holomorphic functions the composition cannot define a group structure on
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J because of the fact that f (U)⊂W will, in general, be violated; even f (U)∩W = /0
can occur. Of course, J contains groups, e.g., Mb and the group of biholomorphic
f : U →U on an open subset U ⊂C. However, these groups Aut(U) are not infinite
dimensional, they are finite-dimensional Lie groups. If one tries to avoid the diffi-
culties of f (U)∩W = /0 and requires – as the second citation [FQS84] seems to sug-
gest – the transformations to be global, one obtains the finite-dimensional Möbius
group. Even if one admits more than 1-point singularities, this yields no larger group
than the group of Möbius transformations, as the following lemma shows:

Lemma 2.13. Let f : C \ S → C be holomorphic and injective with a discrete set
of singularities S ⊂ C. Then, f is a restriction of a Möbius transformation. Conse-
quently, it can be holomorphically continued on C or C\{p}, p ∈ S.

Proof. By the theorem of Casorati–Weierstraß, the injectivity of f implies that all
singularities are poles. Again from the injectivity it follows by the Riemann remov-
able singularity theorem that at most one of these poles is not removable and this
pole is of first order. �

The omission of larger parts of the domain or of the range also yields no infinite-
dimensional group: doubtless, Mb should be a subgroup of the conformal group
G . For a holomorphic function f : U → V , such that C \U contains the disc D
and C\V contains the disc D′, there always exists a Möbius transformation h with
h(V )⊂D′ (inversion with respect to the circle ∂D′). Consequently, there is a Möbius
transformation g with g(V )⊂D. But then Mb∪{ f} can generate no group, since f
cannot be composed with g◦ f because of (g◦ f (U))∩U = /0. A similar statement
is true for the remaining f ∈ J.

As a result, there can be no infinite dimensional conformal group G for the
Euclidean plane.

What do physicists mean when they claim that the conformal group is infinite
dimensional? The misunderstanding seems to be that physicists mostly think and
calculate infinitesimally, while they write and talk globally. Many statements be-
come clearer, if one replaces “group” with “Lie algebra” and “transformation” with
“infinitesimal transformation” in the respective texts.

If, in the case of the Euclidean plane, one looks at the conformal Killing fields
instead of conformal transformations (cf. Sect. 1.4.2), one immediately finds many
infinite dimensional Lie algebras within the collection of conformal Killing fields. In
particular, one finds the Witt algebra. In this context, the Witt algebra W is the com-
plex vector space with basis (Ln)n∈Z, Ln :=−zn+1 d

dz or Ln := z1−n d
dz (cf. Sect. 5.2),

and the Lie bracket
[Ln,Lm] = (n−m)Ln+m.

The Witt algebra will be studied in detail in Chap. 5 together with the Virasoro
algebra.

In two-dimensional conformal field theory usually only the infinitesimal confor-
mal invariance of the system under consideration is used. This implies the existence
of an infinite number of independent constraints, which yields the exceptional fea-
ture of two-dimensional conformal field theory.
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In this context the question arises whether there exists an abstract Lie group G
such that the corresponding Lie algebra Lie G is essentially the algebra of infinites-
imal conformal transformations. We come back to this question in Sect. 5.4 after
having introduced and studied the Witt algebra and the Virasoro algebra in Chap. 5.

Another explanation for the claim that the conformal group is infinite dimen-
sional can perhaps be given by looking at the Minkowski plane instead of the
Euclidean plane. This is not the point of view in most papers on conformal field the-
ory, but it fits in with the type of conformal invariance naturally appearing in string
theory (cf. Chap. 2). Indeed, conformal symmetry was investigated in string theory,
before the actual work on conformal field theory had been done. For the Minkowski
plane, there is really an infinite dimensional conformal group, as we will show in the
next section. The associated complexified Lie algebra is again essentially the Witt
algebra (cf. Sect. 5.1).

Hence, on the infinitesimal level the cases (p,q) = (2,0) and (p,q) = (1,1) seem
to be quite similar. However, in the interpretation and within the representation the-
ory there are differences, which we will not discuss here in detail. We shall just
mention that the Lie algebra sl(2,C) belongs to the Witt algebra in the Euclidean
case since it agrees with the Lie algebra of Mb generated by L−1,L0,L1 ∈W, while
in the Minkowski case sl(2,C) is generated by complexification of sl(2,R) which is
a subalgebra of the infinitesimal conformal transformations of the Minkowski plane.

2.5 The Conformal Group of RRR
1,1

By Theorem 1.13 the conformal transformations ϕ : M→R
1,1 on domains M⊂R

1,1

are precisely the maps ϕ = (u,v) with

ux = vy,uy = vx or ux =−vy,uy =−vx,

and, in addition,
u2

x > v2
x .

For M = R
1,1 the global orientation-preserving conformal transformations can be

described by using light cone coordinates x± = x± y in the following way:

Theorem 2.14. For f ∈C∞(R)let f± ∈C∞(R2,R) be defined by f±(x,y) := f (x±
y). The map

Φ : C∞(R)×C∞(R) −→ C∞(R2,R2),

( f ,g) �−→ 1
2
( f+ +g−, f+−g−)

has the following properties:

1. im Φ= {(u,v) ∈C∞(R2,R2) : ux = vy,uy = vx}.
2. Φ( f ,g) conformal ⇐⇒ f ′ > 0,g′ > 0 or f ′ < 0,g′ < 0.
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3. Φ( f ,g) bijective ⇐⇒ f and g bijective.
4. Φ( f ◦h,g◦ k) =Φ( f ,g)◦Φ(h,k) for f ,g,h,k ∈C∞(R).

Hence, the group of orientation-preserving conformal diffeomorphisms

ϕ : R
1,1 → R

1,1

is isomorphic to the group
(
Diff+(R)×Diff+(R)

)
∪ (Diff−(R)×Diff−(R)).

The group of all conformal diffeomorphisms ϕ : R
1,1 → R

1,1, endowed with the
topology of uniform convergence of ϕ and all its derivatives on compact subsets of
R

2, consists of four components. Each component is homeomorphic to Diff+(R)×
Diff+(R). Here, Diff+(R) denotes the group of orientation-preserving diffeomorph-
isms f : R→R with the topology of uniform convergence of f and all its derivatives
on compact subsets K ⊂ R.

Proof.

1. Let (u,v) =Φ( f ,g). From

ux =
1
2
( f ′+ +g′−),uy =

1
2
( f ′+−g′−),

vx =
1
2
( f ′+−g′−),vy =

1
2
( f ′+ +g′−),

it follows immediately that ux = vy,uy = vx. Conversely, let

(u,v) ∈C∞(R2,R2)

with ux = vy,uy = vx. Then uxx = vyx = uyy. Now, a solution of the one-dimensional
wave equation u has the form u(x,y) = 1

2 ( f+(x,y) + g−(x,y)) with suitable
f ,g ∈C∞(R). Because of vx = uy = 1

2 ( f ′+− g′−) and vy = ux = 1
2 ( f ′+ + g′−), we

have v = 1
2 ( f+−g−) where f and g possibly have to be changed by a constant.

2. For (u,v) =Φ( f ,g) one has u2
x − v2

x = f ′+g′−. Hence

u2
x − v2

x > 0⇐⇒ f ′+g′− > 0⇐⇒ f ′g′ > 0.

3. Let f and g be injective. For ϕ =Φ( f ,g) we have as follows:
ϕ(x,y) = ϕ(x′,y′) implies

f (x+ y)+g(x− y) = f (x′+ y′)+g(x′ − y′),
f (x+ y)−g(x− y) = f (x′+ y′)−g(x′ − y′).

Hence, f (x+ y) = f (x′+ y′) and g(x− y) = g(x′ − y′), that is x+ y = x′+ y′ and
x−y = x′ −y′. This implies x = x′,y = y′. So ϕ is injective if f and g are injective.
From the preceding discussion one can see that if ϕ is injective then f and g are
injective too. Let now f and g be surjective and ϕ = Φ( f ,g). For (ξ ,η) ∈ R

2
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there exist s, t ∈ R with f (s) = ξ +η , g(t) = ξ −η . Then ϕ(x,y) = (ξ ,η) with
x := 1

2 (s + t), y := 1
2 (s− t). Conversely, the surjectivity of f and g follows from

the surjectivity of ϕ .
4. With ϕ =Φ( f ,g), ψ =Φ(h,k) we have ϕ ◦ψ = 1

2 ( f+ ◦ψ+g−◦ψ, f+ ◦ψ−g−◦
ψ) and f+ ◦ψ = f ( 1

2 (h+ + k−)+ 1
2 (h+− k−)) = f ◦h+ = ( f ◦h)+, etc. Hence

ϕ ◦ψ =
1
2
(( f ◦h)+ +(g◦ k)−,( f ◦h)+− (g◦ k)−) =Φ( f ◦h,g◦ k). �

As in the case p = 2,q = 0, there is no theorem similar to Theorem 2.9. For
p = q = 1, the global conformal transformations need no continuation at all, hence
a conformal compactification is not necessary. In this context it would make sense to
define the conformal group of R

1,1 simply as the connected component containing
the identity of the group of conformal transformations R

1,1 → R
1,1. This group is

very large; it is by Theorem 2.14 isomorphic to Diff+(R)×Diff+(R).
However, for various reasons one wants to work with a group of transformations

on a compact manifold with a conformal structure. Therefore, one replaces R
1,1

with S
1,1 in the sense of the conformal compactification of the Minkowski plane

which we described at the beginning (cf. page 8):

R
1,1 → S

1,1 = S×S⊂ R
2,0×R

0,2.

In this manner, one defines the conformal group Conf(R1,1) as the connected
component containing the identity in the group of all conformal diffeomorphisms
S

1,1 → S
1,1. Of course, this group is denoted by Conf(S1,1) as well.

In analogy to Theorem 2.14 one can describe the group of orientation-preserving
conformal diffeomorphisms S

1,1 → S
1,1 using Diff+(S) and Diff−(S) (one simply

has to repeat the discussion with the aid of 2π-periodic functions). As a conse-
quence, the group of orientation-preserving conformal diffeomorphisms S

1,1 → S
1,1

is isomorphic to the group

(Diff+(S)×Diff+(S))∪ (Diff−(S)×Diff−(S)).

Corollary 2.15. Conf(R1,1)∼= Diff+(S)×Diff+(S).

In the course of the investigation of classical field theories with conformal sym-
metry Conf(R1,1) and its quantization one is therefore interested in the properties
of the group Diff+(S) and even more (cf. the discussion of the preceding section) in
its associated Lie algebra of infinitesimal transformations.

Now, Diff+(S) turns out to be a Lie group with models in the Fréchet space of
smooth R-valued functions f : S→ R endowed with the uniform convergence on S

of f and all its derivatives. The corresponding Lie algebra Lie(Diff+(S)) is the Lie
algebra of smooth vector fields Vect(S). The complexification of this Lie algebra
contains the Witt algebra W (mentioned at the end of the preceding section 2.4) as
a dense subspace.

For the quantization of such classical field theories the symmetry groups or alge-
bras Diff+(S), Lie(Diff+(S)), and W have to be replaced with suitable central exten-
sions. We will explain this procedure in general for arbitrary symmetry algebras and
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groups in the following two chapters and introduce after that the Virasoro algebra
Vir as a nontrivial central extension of the Witt algebra W in Chap. 5.

Remark 2.16. Recall that in the case of n = p + q, p,q ≥ 1, but (p,q) �= (1,1), the
conformal group has been identified with the group SO(p + 1,q + 1) or SO(p +
1,q + 1)/{±1} using the natural compactifications of R

p,q described above. To
have a finite dimensional counterpart to these conformal groups also in the case of
(p,q) = (1,1) one could call the group SO(2,2)/{±1} ⊂ Conf(S1,1) the restricted
conformal group of the (compactified) Minkowski plane and use it instead of the
full infinite dimensional conformal group Conf(S1,1).

The restricted conformal group is generated by the translations and the Lorentz
transformations, which form a three-dimensional subgroup, and moreover by the
dilatations and the special transformations.

Introducing again light cone coordinates replacing (x,y) ∈ R
2 by

x+ = x+ y , x− = x− y,

the restricted conformal group SO(2,2)/{±1} acts in the form of two copies of
PSL(2,R) = SL(2,R)/{±1}. For SL(2,R)-matrices

A+ =
(

a+ b+
c+ d+

)
, A− =

(
a− b−
c− d−

)

the action decouples in the following way:

(A+,A−)(x+,x−) =
(

a+x+ +b+

c+x+ +d+
,

a−x−+b−
c−x−+d−

)
.

Proposition 2.17. The action of the restricted conformal group decouples with
respect to the light cone coordinates into two separate actions of PSL(2,R) =
SL(2,R)/{±1}:

SO(2,2)/{±1} ∼= PSL(2,R)×PSL(2,R).
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Chapter 3
Central Extensions of Groups

The notion of a central extension of a group or of a Lie algebra is of particular
importance in the quantization of symmetries. We give a detailed introduction to the
subject with many examples, first for groups in this chapter and then for Lie algebras
in the next chapter.

3.1 Central Extensions

In this section let A be an abelian group and let G be an arbitrary group. The trivial
group consisting only of the neutral element is denoted by 1.

Definition 3.1. An extension of G by the group A is given by an exact sequence of
group homomorphisms

1−→ A
ι−→ E

π−→ G−→ 1.

Exactness of the sequence means that the kernel of every map in the sequence equals
the image of the previous map. Hence the sequence is exact if and only if ι is injec-
tive, π is surjective, the image im ι is a normal subgroup, and

kerπ = im ι(∼= A).

The extension is called central if A is abelian and its image im ι is in the center of
E, that is

a ∈ A,b ∈ E ⇒ ι(a)b = bι(a).

Note that A is written multiplicatively and 1 is the neutral element although A is
supposed to be abelian.

Examples:

• A trivial extension has the form

1−→ A
i−→ A×G

pr2−→ G−→ 1,

Schottenloher, M.: Central Extensions of Groups. Lect. Notes Phys. 759, 39–62 (2008)
DOI 10.1007/978-3-540-68628-6 4 c© Springer-Verlag Berlin Heidelberg 2008
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where A×G denotes the product group and where i : A → G is given by a �→
(a,1). This extension is central.

• An example for a nontrivial central extension is the exact sequence

1−→ Z/kZ−→E = U(1) π−→ U(1)−→ 1

with π(z) := zk for k ∈N, k≥ 2. This extension cannot be trivial, since E = U(1)
and Z/kZ×U(1) are not isomorphic. Another argument for this uses the fact –
known for example from function theory – that a homomorphism τ : U(1)→ E
with π ◦ τ = idU(1) does not exist, since there is no global kth root.

• A special class of group extensions is given by semidirect products. For a group
G acting on another group H by a homomorphism τ : G→Aut(H) the semidirect
product group G�H is the set H×G with the multiplication given by the formula

(x,g).(x′,g′) := (xτ(g)(x′),gg′)

for (g,x),(g′,x′) ∈ G×H. With π(g,x) = x and ι(x) = (a,x), one obtains the
group extension

1−→ H
ι−→ G � H

π−→ G−→ 1.

For example, for a vector space V the general linear group GL(V ) of invert-
ible linear mappings acts naturally on the additive group V , τ(g)(x) = g(x), and
the resulting semidirect group GL(V )�V is (isomorphic to) the group of affine
transformations.

With the same action τ : GL(V )→ Aut(V ) the group of motions of R
p,q,n =

p+q > 2, as a semi-Riemannian space can be described as a semidirect product
O(p,q)� R

n (see the example in Sect. 1.4). As a particular case, we obtain the
Poincaré group as the semidirect group SO(1,3)�R

4 (cf. Sect. 8.1).
Observe that these examples of group extensions are not central, although the

additive group V (resp. R
n) of translations is abelian.

• The universal covering group of the Lorentz group SO(1,3) (that is the identity
component of the group O(1,3) of all metric-preserving linear maps R

1,3 →R
1,3)

is (isomorphic to) a central extension of SO(1,3) by the group {+1,−1}. In fact,
there is the exact sequence of Lie groups

1−→ {+1,−1}−→SL(2,C) π−→ SO(1,3)−→ 1,

where π is the 2-to-1 covering.
This is a special case of the general fact that for a given connected Lie group

G the universal covering group E of G is an extension of G by the group of deck
transformations which in turn is isomorphic to the fundamental group π(G) of G.

• Let V be a vector space over a field K. Then

1−→ K× i−→ GL(V ) π−→ PGL(V )−→ 1
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with i : K× → GL(V ),λ �→ λ idV , is a central extension by the (commutative)
multiplicative group K× = K\{0} of units in K. Here, the projective linear group
PGL(V ) is simply the factor group PGL(V ) = GL(V )/K×.

• The main example in the context of quantization of symmetries is the follow-
ing: Let H be a Hilbert space and let P = P(H) be the projective space of one-
dimensional linear subspaces of H, that is

P(H) := (H\{0})/∼,

with the equivalence relation

f ∼ g :⇔∃λ ∈ C
× : f = λg for f ,g ∈H.

P is the space of states in quantum physics, that is the quantum mechanical
phase space. In Lemma 3.4 it is shown that the group U(H) of unitary operators
on H is in a natural way a nontrivial central extension of the group U(P) of
(unitary) projective transformations on P by U(1)

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1.

To explain this last example and for later purposes we recall some basic notions
concerning Hilbert spaces. A pre-Hilbert space H is a complex vector space with a
positive definite hermitian form, called an inner product or scalar product. A hermi-
tian form is an R-bilinear map

〈 , 〉 : H×H→ C,

which is complex antilinear in the first variable (another convention is to have the
form complex linear in the first variable) and satisfies

〈 f ,g〉= 〈g, f 〉

for all f ,g ∈H. A hermitian form is an inner product if, in addition,

〈 f , f 〉> 0 for all f ∈H\{0}.

The inner product induces a norm on H by ‖ f‖ :=
√
〈 f , f 〉 and hence a topology.

H with the inner product is called a Hilbert space if H is complete as a normed space
with respect to this norm.

Typical finite-dimensional examples of Hilbert spaces are the C
m with the stan-

dard inner product

〈z,w〉 :=
m

∑
j=1

z jw j.

In quantum theory important Hilbert spaces are the spaces L2(X ,λ ) of square-
integrable complex functions f : X → C on various measure spaces X with a mea-
sure λ on X , where the inner product is
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〈 f ,g〉 :=
∫

X
f (x)g(x)dλ (x).

In the case of X = R
n with the Lebesgue measure, this space is separable, that is

there exists a countable dense subset in H. A separable Hilbert space has a countable
(Schauder) basis, that is a sequence (en), en ∈ H, which is mutually orthonormal,
〈en,em〉= δn,m, and such that every f ∈H has a unique representation as a conver-
gent series

f =∑
n
αnen

with coefficients αn ∈ C. These coefficients are αn = 〈en, f 〉.
In quantum theory the Hilbert spaces describing the states of the quantum system

are required to be separable. Therefore, in the sequel the Hilbert spaces are assumed
to be separable.

A unitary operator U on H is a C-linear bijective map U : H → H leaving the
inner product invariant:

f ,g ∈H =⇒ 〈U f ,Ug〉= 〈 f ,g〉.

It is easy to see that the inverse U−1 : H → H of a unitary operator U : H → H

is unitary as well and that the composition U ◦V of two unitary operators U,V is
always unitary. Hence, the composition of operators defines the structure of a group
on the set of all unitary operators on H. This group is denoted by U(H) and called
the unitary group of H.

In the finite-dimensional situation (m = dimH) the unitary group U(H) is iso-
morphic to the matrix group U(m) of all complex m×m-matrices B with B−1 = B∗.
For example, U(1) is isomorphic to S

1. The special unitary groups are the

SU(m) = {B ∈ U(m) : detB = 1}.

SU(2) is isomorphic to the group of unit quaternions and can be identified with
the unit sphere S

3 and thus provides a 2-to-1 covering of the rotation group SO(3)
(which in turn is the three-dimensional real projective space P(R4)).

Let γ : H \ {0} → P be the canonical map into the quotient space P(H) = (H \
{0})/ ∼ with respect to the equivalence relation which identifies all points on a
complex line through 0 (see above). Let ϕ = γ( f ) and ψ = γ(g) be points in the
projective space P with f ,g ∈H. We then define the “transition probability” as

δ (ϕ,ψ) :=
|〈 f ,g〉|2
‖ f‖2‖g‖2 .

δ is not quite the same as a metric but it defines in the same way as a metric a
topology on P which is the natural topology on P. This topology is generated by the
open subsets {ϕ ∈ P : δ (ϕ,ψ) < r}, r ∈ R, ψ ∈ P. It is also the quotient topology
on P with respect to the quotient map γ , that is a subset W ⊂ P is open if and only
if γ−1(W )⊂H is open in the Hilbert space topology.
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Definition 3.2. A bijective map T : P→ P with the property

δ (Tϕ,Tψ) = δ (ϕ,ψ) for ϕ,ψ ∈ P,

is called a projective transformation or projective automorphism.

Furthermore, we define the group Aut(P) of projective transformations to be
the set of all projective transformations where the group structure is again given by
composition. Hence, Aut(P) is the group of bijections of P, the quantum mechanical
phase space, preserving the transition probability. This means that Aut(P) is the full
symmetry group of the quantum mechanical state space.

For every U ∈ U(H) we define a map γ̂(U) : P→ P by

γ̂(U)(ϕ) := γ(U( f ))

for all ϕ = γ( f ) ∈ P with f ∈ H. It is easy to show that γ̂(U) : P → P is well
defined and belongs to Aut(P). This is true not only for unitary operators, but also
for the so-called anti-unitary operators V , that is for the R-linear bijective maps
V : H→H with

〈V f ,V g〉= 〈 f ,g〉,V (i f ) =−iV ( f )

for all f ,g ∈H.
Note that γ̂ : U(H)→ Aut(P) is a homomorphism of groups.
The following theorem is a complete characterization of the projective automor-

phisms:

Theorem 3.3. (Wigner [Wig31], Chap. 20, Appendix) For every projective trans-
formation T ∈ Aut(P) there exists a unitary or an anti-unitary operator U with
T = γ̂(U).

The elementary proof of Wigner has been simplified by Bargmann [Bar64].

Let
U(P) := γ̂(U(H))⊂ Aut(P).

Then U(P) is a subgroup of Aut(P), called the group of unitary projective transfor-
mations. The following result is easy to show:

Lemma 3.4. The sequence

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1

with ι(λ ) := λ idH, λ ∈ U(1), is an exact sequence of homomorphism and hence
defines a central extension of U(P) by U(1).

Proof. In order to prove this statement one only has to check that ker γ̂ = U(1)idH.
Let U ∈ ker γ̂ , that is γ̂(U) = idP. Then for all f ∈H, ϕ := γ( f ),

γ̂(U)(ϕ) = ϕ = γ( f ) and γ̂(U)(ϕ) = γ(U f ),
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hence γ(U f ) = γ( f ). Consequently, there exists λ ∈ C with λ f = U f . Since U is
unitary, it follows that λ ∈ U(1). By linearity of U , λ is independent of f , that is U
has the form U = λ idH. Therefore, U ∈ U(1)idH.

Conversely, let λ ∈ U(1). Then for all f ∈H, ϕ := γ( f ), we have

γ̂(λ idH)(ϕ) = γ(λ f ) = γ( f ) = ϕ,

that is γ̂(λ idH) = idP and hence, λ idH ∈ ker γ̂ . �
Note that this basic central extension is nontrivial, cf. Example 3.21.
The significance of Wigner’s Theorem in quantum theory is the following: The

states of a quantum system are represented by points in P = P(H) for a suitable sep-
arable Hilbert space. A symmetry of such a quantum system or an invariance princi-
ple is a bijective transformation leaving invariant the transition probability δ , hence
it is an element of the automorphism group Aut(P), that is a projective transforma-
tion. Now Wigner’s Theorem 3.3 asserts that such a symmetry is always induced
by either a unitary or an anti-unitary operator on the Hilbert space H. In physical
terms, “Every symmetry transformation between coherent states is implementable
by a one-to-one complex-linear or antilinear isometry of H.”

In the next section we consider the same question not for a single symmetry given
by only one transformation but for a group of symmetries. Note that this means that
the notion of symmetry is extended from a single invariance principle to a group of
symmetry operations.

3.2 Quantization of Symmetries

Examples for classical systems with a symmetry group G are

• G = SO(3) for systems with rotational symmetry;
• G = Galilei group, for free particles in classical nonrelativistic mechanics;
• G = Poincaré group SO(1,3) � R

4, for free particles in the special theory of
relativity;

• G = Diff+(S)×Diff+(S) in string theory and in conformal field theory on R
1,1;

• G = gauge group = Aut(P), where P is a principal fiber bundle, for gauge theo-
ries;

• G = unitary group U(H) as a symmetry of the Hilbert space H (resp. U(P) as
a symmetry of P = P (H)) when H (resp. P) is considered as a classical phase
space, for instance in the context of quantum electrodynamics (see below p. 51).

In these examples and in other classical situations the symmetry in question is
manifested by a group homomorphism

τ : G→ Aut(Y )

with respect to the classical phase space Y (often represented by a manifold Y
equipped with a symplectic form) and a suitable group Aut(Y ) of transformations
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leaving invariant the physics of the classical system. (In case of a manifold with
a symplectic form at least the symplectic form is left invariant so that the auto-
morphisms have to be canonical transformations.) In addition, in most cases τ is
supposed to be continuous for natural topologies on G and Aut(Y ). The symmetry
can also be described by the corresponding (continuous) action of the symmetry
group G on Y :

G×Y → Y,(g,y) �→ τ(g)(y).

Example: Rotationally invariant classical system with phase space Y = R
3×R

3 and
action SO(3)×Y → Y,(g,(q, p)) �→ (g−1q,g−1 p).

In general, such a group homomorphism is called a representation of G in Y . In
case of a vector space Y and Aut(Y ) = GL(Y ), the group of invertible linear maps
Y → Y the representation space Y sometimes is called a G-module. Whether or not
the representation is assumed to be continuous or more (e.g., differentiable) depends
on the context.

Note, however, that the symmetry groups in the above six examples are topolog-
ical groups in a natural way.

Definition 3.5. A topological group is a group G equipped with a topology, such
that the group operation G×G → G, (g,h) �→ gh, and the inversion map G → G,
g �→ g−1, are continuous.

The above examples of symmetry groups are even Lie groups, that is they are
manifolds and the composition and inversion are differentiable maps. The first three
examples are finite-dimensional Lie groups, while the last three examples are, in
general, infinite dimensional Lie groups (modeled on Fréchet spaces). (The topol-
ogy of Diff+(S) will be discussed briefly at the beginning of Chap. 5, and the unitary
group U(H) has a Lie group structure given by the operator norm (cf. p. 46), but it
also carries another important topology, the strong topology which will be investi-
gated below after Definition 3.6.)

Now, the quantization of a classical system Y means to find a Hilbert space H on
which the classical observables (that is functions on Y ) in which one is interested
now act as (mostly self-adjoint) operators on H in such a way that the commutators
of these operators correspond to the Poisson bracket of the classical variables, see
Sect. 7.2 for further details on canonical quantization.

After quantization of a classical system with the classical symmetry τ : G →
Aut(Y ) a homomorphism

T : G→ U(P)

will be induced, which in most cases is continuous for the strong topology on U(P)
(see below for the definition of the strong topology).

This property cannot be proven – it is, in fact, an assumption concerning the
quantization procedure. The reasons for making this assumption are the following.
It seems to be evident from the physical point of view that each classical symmetry
g ∈ G acting on the classical phase space should induce after quantization a trans-
formation of the quantum phase space P. This requirement implies the existence of
a map
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T (g) : P→ P

for each g ∈ G. Again by physical arguments, T (g) should preserve the transition
probability, since δ is – at least in the case of classical mechanics – the quantum
analogue of the symplectic form which is preserved by g. Hence, by these consider-
ations, one obtains a map

T : G→ Aut(P).

In addition to these requirements it is simply reasonable and convenient to as-
sume that T has to respect the natural additional structures on G and Aut(P), that
is that T has to be a homomorphism since τ is a homomorphism, and that it is a
continuous homomorphism when τ is continuous.

This (continuous) homomorphism T : G → U(P) is sometimes called the quan-
tization of the symmetry τ . See, however, Theorem 3.10 and Corollary 3.12 which
yield a (continuous) homomorphism S : E →U(H) of a central extension of G which
is also called the quantization of the classical symmetry τ .

Definition 3.6. Strong (operator) topology on U(H): Typical open neighborhoods
of U0 ∈ U(H) are the sets

V f (U0,r) := {U ∈ U(H) : ‖U0( f )−U( f )‖< r}

with f ∈H and r > 0. These neighborhoods form a subbasis of the strong topology:
A subset W ⊂ U(H) is by definition open if for each U0 ∈ W there exist finitely
many such V f j(U0,r j), j = 1, . . . ,k, so that the intersection is contained in W , that is

U0 ⊂
k⋂

j=1

V f j(U0,r j)⊂W .

On U(P) = γ̂(U(H)) a topology (the quotient topology) is defined using the map
γ̂ : U(H)→ U(P):

V ⊂ U(P)open :⇐⇒ γ̂−1(V )⊂ U(H)open.

We see that the strong topology is the topology of pointwise convergence in both
cases. The strong topology can be defined on any subset

M ⊂BR(H) := {A : H→H|A is R-linear and bounded}

of the space of R-linear continuous endomorphisms, hence in particular on

Mu = {U : H→H|Uunitary or anti-unitary}.

Note that a linear map A : H→H is continuous if and only if it is bounded, that
is if its operator norm

‖A‖ := sup{‖A f‖ : f ∈BR,‖ f‖ ≤ 1}
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is finite. And with the operator norm the space BR(H) is a Banach space, that is
a complete normed space. Evidently, a unitary or anti-unitary operator is bounded
with operator norm equal to 1.

In the same way as above the strong topology on Aut(P) is defined using δ
replacing the norm.

Observe that the strong topology on U(H) and U(P) as well as on Mu and Aut(P)
is the topology of pointwise convergence. So, in contrast to its name, the strong
topology is rather a weak topology.

Since all these sets of mappings are uniformly bounded they are equicontinuous
by the theorem of Banach–Steinhaus and hence the strong topology also agrees
with the compact open topology, that is the topology of uniform convergence on the
compact subsets of H (resp. of P). We also conclude that in the case of a separable
Hilbert space (which we always assume), the strong topology on U(H) as well as
on U(P) is metrizable.

On subsets M of BR(H) we also have the natural norm topology induced by
the operator norm. This topology is much stronger than the strong topology in the
infinite dimensional case, since it is the topology of uniform convergence on the unit
ball of H.

Definition 3.7. For a topological group G a unitary representation R of G in the
Hilbert space H is a continuous homomorphism

R : G→ U(H)

with respect to the strong topology on U(H). A projective representation R of G is,
in general, a continuous homomorphism

R : G→ U(P)

with respect to the strong topology on U(P) (P = P(H)).

Note that U(H) and U(P) are topological groups with respect to the strong topol-
ogy (cf. 3.11). Moreover, both these groups are connected and metrizable (see be-
low).

The reason that in the context of representation theory one prefers the strong
topology over the norm topology is that only few homomorphisms G → U(H) turn
out to be continuous with respect to the norm topology. In particular, for a com-
pact Lie group G and its Hilbert space H = L2(G) of square-integrable measurable
functions with respect to Haar measure the regular representation

R : G→ U(L2(G)),g �→ (Rg : f (x) �→ f (xg)),

is not continuous in the norm topology, in general. But R is continuous in the strong
topology, since all the maps g �→ Rg( f ) are continuous for fixed f ∈ L2(G). This
last property is equivalent to the action

G×L2(G)→ L2(G),(g, f ) �→ Rg( f ),

of G on L2(G) being continuous.
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Another reason to use the strong topology is the fact that various related actions,
e.g., the natural action of U(H) on the space of Fredholm operators on H or on the
Hilbert space of Hilbert–Schmidt operators, are continuous in the strong topology.
Hence, the strong topology is weak enough to allow many important representa-
tions to be continuous and strong enough to ensure that natural actions of U(H) are
continuous.

Lifting Projective Representations. When quantizing a classical symmetry group
G the following question arises naturally: Given a projective representation T , that
is a continuous homomorphism T : G → U(P) with P = P(H), does there exist a
unitary representation S : G→ U(H), such that the following diagram commutes?

In other words, can a projective representation T always be induced by a proper
unitary representation S on H so that T = γ̂ ◦S?

The answer is no; such a lifting does not exist in general. Therefore, it is, in gen-
eral, not possible to take G as the quantum symmetry group in the sense of a uni-
tary representation S : G → U(H) in the Hilbert space H. However, a lifting exists
with respect to the central extension of the universal covering group of the classical
symmetry group. (Here and in the following, the universal covering group of a con-
nected Lie group G is the (up to isomorphism) uniquely determined connected and
simply connected universal covering G̃ of G with its Lie group structure.) This is
well known for the rotation group SO(3) where the transition from SO(3) to the sim-
ply connected 2-to-1 covering group SU(2) can be described in the following way:

Example 3.8. To every projective representation T ′ : SO(3) → U(P) there corre-
sponds a unitary representation S : SU(2) → U(H) such that γ̂ ◦ S = T ′ ◦P =: T .
The following diagram is commutative:

S is unique up to a scalar multiple of norm 1.

SU(2) is the universal covering group of SO(3) with covering map (and group
homomorphism) P : SU(2) → SO(3). From a general point of view the lifting
S : SU(2) → U(H) of T := T ′ ◦ P (that is T = γ̂ ◦ S) in the diagram is obtained
via the lifting of T to a central extension of SU(2) which always exists according
to the subsequent Theorem 3.10. Since each central extension of SU(2) is trivial
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(cf. Remark 4.10), this lifting factorizes and yields the lifting T (cf. Bargmann’s
Theorem 4.8).

Remark 3.9. In a similar matter one can lift every projective representation T ′ :
SO(1,3)→ U(P) of the Lorentz group SO(1,3) to a proper unitary representation
S : SL(2,C)→ U(H) in H of the group SL(2,C): T ′ ◦P = γ̂ ◦S.

Here, P : SL(2,C)→ SO(1,3) is the 2-to-1 covering map and homomorphism.
Because of these facts – the lifting up to the covering maps – the group SL(2,C)

is sometimes called the quantum Lorentz group and, correspondingly, SU(2) is
called the quantum mechanical rotation group.

Theorem 3.10. Let G be a group and T : G → U(P) be a homomorphism. Then
there is a central extension E of G by U(1) and a homomorphism S : E → U(H), so
that the following diagram commutes:

Proof. We define

E := {(U,g) ∈ U(H)×G | γ̂(U) = T g}.

E is a subgroup of the product group U(H)×G, because γ̂ and T are homomor-
phisms. Obviously, the inclusion

ι : U(1)→ E,λ �→ (λ idH,1G)

and the projection π := pr2 : E → G are homomorphisms such that the upper row
is a central extension. Moreover, the projection S := pr1 : E → U(H) onto the first
component is a homomorphism satisfying T ◦π = γ̂ ◦S. �

Proposition 3.11. U(H) is a topological group with respect to the strong topology.

This property simplifies the proof of Bargmann’s Theorem (4.8) significantly.
The proposition is in sharp contrast to claims in the corresponding literature on
quantization of symmetries (e.g., [Sim68]) and in other publications. Since even in
the latest publications it is repeated that U(H) is not a topological group, we provide
the simple proof (cf. [Scho95, p. 174]):

Proof. In order to show the continuity of the group operation (U,U ′) �→ UU ′ =
U ◦U ′ it suffices to show that to any pair (U,U ′) ∈ U(H)×U(H) and to arbitrary
f ∈H,r > 0, there exist open subsets V ,V ′ of U(H) satisfying
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{VV ′|V ∈ V ,V ′ ∈ V ′} ⊂ V f (UU ′,r).

Because of

‖UU ′( f )−VV ′( f )‖
= ‖UU ′( f )−VU ′( f )+VU ′( f )−VV ′( f )‖
≤ ‖UU ′( f )−VU ′( f )‖+‖VU ′( f )−VV ′( f )‖
= ‖UU ′( f )−VU ′( f )‖+‖U ′( f )−V ′( f )‖
= ‖U(g)−V (g)‖+‖U ′( f )−V ′( f )‖,

where g = U ′( f ), the condition is satisfied for V = Vg(U, 1
2 r) and V ′ = V f (U ′, 1

2 r).
To show the continuity of U �→U−1 let g = U−1( f ) hence f = U(g). Then

‖U−1( f )−V−1( f )‖= ‖g−V−1U(g)‖= ‖V (g)−U(g)‖,

and the condition ‖V (g)−U(g)‖< r directly implies

‖U−1( f )−V−1( f )‖< r.

�
Note that the topological group U(H) is metrizable and complete in the strong

topology and the same is true for U(P).
Because of Proposition 3.11, it makes sense to carry out the respective investi-

gations in the topological setting from the beginning, that is for topological groups
and continuous homomorphisms. Among others we have the following properties:

1. U(H) is connected, since U(H) is pathwise connected with respect to the norm
topology. Every unitary operator is in the orbit of a suitable one-parameter group
exp(iAt).

2. U(P) and Aut(P) are also topological groups with respect to the strong topology.
3. γ̂ : U(H) → U(P) is a continuous homomorphism (with local continuous sec-

tions, cf. Lemma 4.9).
4. U(P) is a connected metrizable group. U(P) is the connected component con-

taining the identity in Aut(P).
5. Every continuous homomorphism T : G → Aut(P) on a connected topological

group G has its image in U(P), that is it is already a continuous homomorphism
T : G → U(P). This is the reason why – in the context of quantization of sym-
metries for connected groups G – it is in most cases enough to study continuous
homomorphism T : G→ U(P) into U(P) instead of T : G→ Aut(P)

Corollary 3.12. If, in the situation of Theorem 3.10, G is a topological group and
T : G → U(P) is a projective representation of G, that is T is a continuous homo-
morphism, then the central extension E of G by U(1) has a natural structure of a
topological group such that the inclusion ι : U(1) → E, the projection π : E → G
and the lift S : E → U(H) are continuous. In particular, S is a unitary representa-
tion in H.
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To show this statement one only has to observe that the product group G×U(H)
is a topological group with respect to the product topology and thus E is a topolog-
ical group with respect to the induced topology.

Remark 3.13. In view of these results a quantization of a classical symmetry group
G can in general be regarded as a central extension E of the universal covering group
of G by the group U(1) of phases.

Quantum Electrodynamics. We conclude this section with an interesting example
of a central extension of groups which occurs naturally in the context of second
quantization in quantum electrodynamics. The first quantization leads to a separa-
ble Hilbert space H of infinite dimension, sometimes called the one-particle space,
which decomposes according to the positive and negative energy states: We have
two closed subspaces H+,H− ⊂ H such that H is the orthogonal sum of H±, that
is H = H+⊕H−. For example, H± is given by the positive resp. negative or zero
eigenspaces of the Dirac hamiltonian on H = L2(R3,C4).

An orthogonal decomposition H = H+⊕H− with infinite dimensional compo-
nents H± is called a polarization.

Now, the Hilbert space H (or its projective space P = P(H)) can be viewed as a
classical phase space with the imaginary part of the scalar product as the symplectic
form and with the unitary group U(H) (or U(P)) as symmetry group. In this context
the observables one is interested in are the elements of the CAR algebra A (H) of
H. Second quantization is the quantization of these observables.

The CAR (Canonical Anticommutation Relation) algebra A (H) = A of a
Hilbert space H is the universal unital C∗-algebra generated by the annihilation
operators a( f ) and the creation operators a∗( f ), f ∈H, with the following commu-
tation relations:

a( f )a∗(g)+a∗(g)a( f ) = 〈 f ,g〉1,

a∗( f )a∗(g)+a∗(g)a∗( f ) = 0 = a( f )a(g)+a(g)a( f ).

Here, a∗ : H→A is a complex-linear map and a : H→A is complex antilinear
(other conventions are often used in the literature). The CAR algebra A (H) can be
described as a Clifford algebra using the tensor algebra of H.

Recall that a Banach algebra is an associative algebra B over C which is a com-
plex Banach space such that the multiplication satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a,b∈
B. A unital Banach algebra B is a Banach algebra with a unit of norm 1. Finally,
a C∗-algebra is a Banach algebra B with an antilinear involution ∗ : B → B,b �→ b∗

satisfying (ab)∗ = b∗a∗ and ‖aa∗‖= ‖a‖2 for all a,b ∈ B.
Let us now assume to have a polarization H = H+ ⊕H− induced by a (first)

quantization (for example the quantization of the Dirac hamiltonian). For a gen-
eral complex Hilbert space W the complex conjugate W is W as an abelian group
endowed with the “conjugate” scalar multiplication (λ ,w) �→ λw and with the con-
jugate scalar product.
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The second quantization is obtained by representing the CAR algebra A in
the fermionic Fock space (which also could be called spinor space) S(H+) = S
depending on the polarization. S is the Hilbert space completion of

∧
H+⊗
∧

H−,

with the induced scalar product on
∧

H+⊗
∧

H−, where

∧
W =
⊕ p∧

W

is the exterior algebra of the Hilbert space W equipped with the induced scalar
product on

∧
W.

In order to define the representation π of A in S, the actions of a∗( f ),a( f ) on
S are given in the following using a∗( f ) = a∗( f+)+ a∗( f−),a( f ) = a( f+)+ a( f−)
with respect to the decomposition f = f+ + f− ∈H+⊕H−.

For f1, f2, . . . fn ∈H+,g1,g2, . . . ,gm ∈H−, and ξ ∈∧k
H+,η ∈∧H−, one defines

π(a∗)( f+)ξ ⊗η := ( f+∧ξ )⊗η ,

π(a∗)( f−)(ξ ⊗g1∧ . . .gm) :=
j=n

∑
j=1

(−1)k+ j+1ξ ⊗〈g j, f−〉g1∧ . . . ĝ j ∧ . . .gm,

π(a)( f+)( f1∧ . . .∧ fn⊗η) :=
j=n

∑
j=1

(−1) j+1〈 f+, f j〉 f1∧ . . . f̂ j ∧ . . . fn⊗η ,

π(a)( f−)(ξ ⊗η) := (−1)kξ ⊗ f− ∧η .

Lemma 3.14. This definition yields a representation

π : A →B(S)

of C∗-algebras satisfying the anticommutation relations.

Here, B(H)⊂ End H is the C∗-algebra of bounded C-linear endomorphisms of H.
The representation induces the field operatorsΦ : H→B(S) byΦ( f ) = π(a( f ))

and its adjoint Φ∗,Φ∗ = π ◦a∗.
One is interested to know which unitary operators U ∈U(H) can be carried over

to unitary operators in S in order to have the dynamics of the first quantization
implemented in the Fock space (or spinor space) S, that is in the second quantized
theory. To “carry over” means for a unitary U ∈ U(H) to find a unitary operator
U∼ ∈ U(S) in the Fock space S such that

U∼ ◦Φ( f ) =Φ(U f )◦U∼, f ∈H,

with the same condition for Φ∗. In this situation U∼ is called an implementation
of U .
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A result of Shale and Stinespring [ST65*] yields the condition under which U is
implementable.

Theorem 3.15. Each unitary operator U ∈U(H) has an implementation U∼ ∈U(S)
if and only if in the block matrix representation of U

U =

(
U++ U−+

U+− U−−

)

: H+⊕H− −→H+⊕H−

the off-diagonal components

U+− : H+ →H−,U−+ : H− →H+

are Hilbert–Schmidt operators. Moreover, any two implementations U∼, ′U∼ of
such an operator U are the same up to a phase factor λ ∈ U(1): ′U∼ = λU∼.

Recall that a bounded operator T : H → W between separable Hilbert spaces
is Hilbert–Schmidt if with respect to a Schauder basis (en) of H the condition
∑‖Ten‖2 < ∞ holds.

‖T‖HS =
√
∑‖Ten‖2

is the Hilbert–Schmidt norm.

Definition 3.16. The group Ures = Ures(H+) of all implementable unitary operators
on H is called the restricted unitary group.

The set of implemented operators

U∼
res = U∼

res(H+) = {V ∈ U(S)|∃U : U∼ = V}

is a subgroup of the unitary group U(S), and the natural “restriction” map

π : U∼
res → Ures

is a homomorphism with kernel {λ idS : λ ∈ U(1)} ∼= U(1).
As a result, with ı(λ ) := λ idS,λ ∈U(1), we obtain an exact sequence of groups

1−→ U(1) ı−→ U∼
res

π−→ Ures −→ 1, (3.1)

and therefore another example of a central extension of groups appearing naturally
in the context of quantization. This is the example we intended to present, and we
want briefly to report about some properties of this remarkable central extension in
the following.

We cannot expect to represent Ures in the Fock space S, that is to have a homo-
morphism ρ : Ures → U(S) with π ◦ ρ = idUres , because this would imply that the
extension is trivial: such a ρ is a splitting, and the existence of a splitting implies
triviality (see below in the next section). One knows, however, that the extension is
not trivial (cf. [PS86*] or [Wur01*], for example).
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As a compensation we obtain a homomorphism ρ : Ures → U(P(S)). The exis-
tence of ρ follows directly from the properties of the central extension (3.1).

In what sense can we expect ρ : Ures → U(P(S)) to be continuous? In other
words, for which topology on Ures is ρ a representation? The strong topology on
Ures is not enough. But on Ures there is the natural topology induced by the norm

‖U++‖+‖U−−‖+‖U+−‖HS +‖U−+‖HS,

where ‖ ‖HS is the Hilbert–Schmidt norm. With respect to this topology the group
Ures becomes a real Banach Lie group and ρ is continuous.

Moreover, on U∼
res one obtains a topology such that this group is a Banach Lie

group as well, and the natural projection is a Lie group homomorphism (cf. [PS86*],
[Wur01*]). Altogether, the exact sequence (3.1) turns out to be an exact sequence
of Lie group homomorphisms and hence a central extension of infinite dimensional
Banach Lie groups.

According to Theorem 3.15 the phase of an implemented operator U∼ for
U ∈ Ures is not determined, and the possible variations are described by our exact
sequence (3.1). In the search of a physically relevant phase of the second quantized
theory, it is therefore natural to ask whether or not there exists a continuous map

s : Ures → U∼
res with π ◦ s = idUres .

We know already that there is no such homomorphism since the central exten-
sion is not trivial. And it turns out that there also does not exist such a continuous
section s.

The arguments which prove this result are rather involved and do not have their
place in these notes. Nevertheless, we give some indications.

First of all, we observe that the restriction map

π : U∼
res → Ures

in the exact sequence (3.1) is a principal fiber bundle with structure group U(1)
(cf. [Diec91*] or [HJJS08*] for general properties of principal fiber bundles). This
observation is in close connection with the investigation leading to Bargmann’s The-
orem, cf. Lemma 4.9. Note that a principal fiber bundle π : P → X is (isomorphic
to) the trivial bundle if and only if there exists a global continuous section s : X → P
satisfying π ◦ s = idX .

The existence of a continuous section s : Ures → U∼
res in our situation, that is

π ◦ s = idUres , would imply that the principal bundle is a trivial bundle and thus
homeomorphic to Ures×U(1). Although we know already that U∼

res cannot be iso-
morphic to the product group Ures×U(1) as a group, it is in principle not excluded
that these spaces are homeomorphic, that is isomorphic as topological spaces.

But the principal bundle π cannot be trivial in the topological sense. To see this,
one can use some interesting universal properties of another principal fiber bundle

τ : E −→ GL0
res(H+),

which is in close connection to π : U∼
res → Ures.
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Here GLres(H+) is the group of all bounded invertible operators H → H whose
off-diagonal components are Hilbert–Schmidt operators, so that Ures = U(H) ∩
GLres(H+). GLres(H+) will be equipped with the topology analogous to the topol-
ogy on Ures respecting the Hilbert–Schmidt norms, and GL0

res(H+) is the connected
component of GLres(H+) containing the identity. The group E is in a similar relation
to U∼

res as GLres(H+) to Ures. In concrete terms

E := {(T,P) ∈ GL0
res(H+)×GL(H+) : T −P ∈I1},

where I1 is the class of operators having a trace, that is being a trace class operator.
(We refer to [RS80*] for concepts and results about operators on a Hilbert space.) E
obtains its topology from the embedding into GL0

res(H+)×I1(H+). The structure
group of the principal bundle τ : E −→ GL0

res(H+) is the Banach Lie group D of
invertible bounded operators having a determinant, that is of operators of the form
1+T with T having a trace.

τ is simply the projection into the first component and we obtain another exact
sequence of infinite dimensional Banach Lie groups as well as a principal fiber
bundle

1−→D
ı−→ E

τ−→ GL0
res(H+)−→ 1. (3.2)

E is studied in the book of Pressley and Segal [PS86*] where, in particular, it
is shown that E is contractible. This crucial property is investigated by Wurzbacher
[Wur06*] in greater detail. The main ingredient of the proof is Kuiper’s result on the
homotopy type of the unitary group U(H) of a separable and infinite dimensional
Hilbert space H: U(H) with the norm topology is contractible and this also holds
for the general linear group GL(H) with the norm topology (cf. [Kui65*]).

By general properties of classifying spaces the contractibility of the group E
implies that τ is a universal fiber bundle for D (see [Diec91*], for example). This
means that every principal fiber bundle P → X with structure group D can be ob-
tained as the pullback of τ with respect to a suitable continuous map X →GL0

res(H).
Since there exist nontrivial principal fiber bundles with structure group D the bun-
dle τ : E →GL0

res cannot be trivial, and thus there cannot exist a continuous section
GL0

res(H+)→ E .
One can construct directly a nontrivial principal fiber bundle with structure group

D . Or one uses another interesting result, namely that the group D is homotopy
equivalent to U(∞) according to a result of Palais [Pal65*]. U(∞) is the limit of
the unitary groups U(n)⊂ U(n+1) and the above exact sequence (3.2) realizes the
universal sequence

1−→ U(∞)−→EU(∞)−→BU(∞)−→ 1.

Since there exist nontrivial fiber bundles with structure group U(n) it follows that
there exist nontrivial principal fiber bundles with structure group U(∞) as well, and
hence the same holds for D as structure group.
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The closed subgroup D1 := {P ∈D : detP = 1} of D induces the exact sequence

1−→D1
ı−→D

det−→ C
× −→ 1.

With the quotient GL0∼
res (H+) := E /D1 one obtains another universal bundle

GL0∼
res (H+)→ GL0

res(H+),

now with the multiplicative group C
× as structure group. We have the exact se-

quence
1−→ C

× ı−→ GL0∼
res (H+) π−→ GLres(H+)−→ 1,

which is another example of a central extension. Using the universality of this se-
quence one concludes that GL0∼

res (H+)→ GL0
res(H+) again has no continuous sec-

tion. It follows in the same way that eventually our original bundle π : U∼
res →

Ures (3.1) cannot have a continuous section. In summary we have

Proposition 3.17. The exact sequence of Banach Lie groups

1−→ U(1) ı−→ U∼
res

π−→ Ures −→ 1

is a central extension of the restricted unitary group Ures and a principal fiber bundle
which does not admit a continuous section.

In the same manner the basic central extension

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1

introduced in Lemma 3.4 has no continuous section when endowed with the norm
topology. Since U(H) is contractible [Kui65*] the bundle is universal. But we know
that there exist nontrivial U(1)-bundles, for instance the central extensions

1−→ U(1) ι−→ U(n)
γ̂−→ U(P(Cn))−→ 1

are nontrivial fiber bundles for n > 1 (cf. Example 3.21 below).
As will be seen in the next section the basic central extension also has no sec-

tions which are group homomorphisms (that is there exists no splitting map, cf.
Example 3.21).

3.3 Equivalence of Central Extensions

We now come to general properties of central extensions beginning the discussion
without taking topological questions into account.

Definition 3.18. Two central extensions

1−→ A
ı−→ E

π−→ G−→ 1 , 1−→ A
ı−→ E ′ π−→ G−→ 1
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of a group G by A are equivalent, if there exists an isomorphism ψ : E → E ′ of
groups such that the diagram

commutes.

Definition 3.19. An exact sequence of group homomorphisms

1−→ A
ı−→ E

π−→ G−→ 1

splits if there is a homomorphism σ : G→ E such that π ◦σ = idG.

Of course, by the surjectivity of π one can always find a map τ : G → E with
π ◦ τ = idG. But this map will not be a group homomorphism, in general.

If the sequence splits with splitting map σ : G→ E, then

ψ : A×G→ E, (a,g) �→ ı(a)σ(g),

is a group isomorphism leading to the trivial extension

1−→ A−→A×G−→G−→ 1,

which is equivalent to the original sequence: the diagram

commutes. Conversely, if such a commutative diagram with a group isomorphism
ψ exists, the sequence

1−→ A−→ E −→ G−→ 1

splits with splitting map σ(g) := ψ(1A,g). We have shown that

Lemma 3.20. A central extension splits if and only if it is equivalent to a trivial
central extension.

Example 3.21. There exist many nontrivial central extensions by U(1). A general
example of special importance in the context of quantization is given by the exact
sequence (Lemma 3.4)
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1−→ U(1) ι−→ U(n)
γ̂−→ U(P(Cn))−→ 1

for each n ∈ N,n > 1, and

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1

for infinite dimensional Hilbert spaces H. These extensions are not equivalent to
the trivial extension. They are also nontrivial as fiber bundles (with respect to both
topologies on U(H), the norm topology or the strong topology).

Proof. All these extensions are nontrivial if this holds for n = 2 since this extension
is contained in the others induced by the natural embeddings C

2 ↪→ C
n resp. C

2 ↪→
H. The nonequivalence to a trivial extension in the case n = 2 follows from well-
known facts.
In particular, we have the following natural isomorphisms:

U(2)∼= U(1)×SU(2) and PU(2) = U(P(C2))∼= SO(3)

as groups (and as topological spaces). If the central extension

1−→ U(1) ι−→ U(2)
γ̂−→ PU(2)−→ 1

would be equivalent to the trivial extension then there would exist a splitting homo-
morphism

σ : SO(3)∼= PU(2)→ U(2)∼= U(1)×SU(2).

The two components of σ are homomorphisms as well, so that the second compo-
nent σ2 : SO(3)→ SU(2) would be a splitting map of the natural central extension

1−→ {+1,−1} ι−→ SU(2) π−→ SO(3)−→ 1,

which also is the universal covering. This is a contradiction. For instance, the stan-
dard representation ρ : SU(2) ↪→GL(C2) cannot be obtained as a lift of a represen-
tation of SO(3) because of π(±1) = 1.

In the same way one concludes that there is no continuous section. �

Note that the nonexistence of a continuous section has the elementary proof just
presented above without reference to the universal properties which have been con-
sidered at the end of the preceding section. One can give an elementary proof for
Proposition 3.17 as well, with a similar ansatz using the fact that the projection
U∼

res → Ures corresponds to the natural projection γ̂ : U(S)→ U(P(S)).
On the other hand, the basic exact sequence

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1
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is universal also for the strong topology (not only for the norm topology as men-
tioned in the preceding section), since the unitary group U(H) is contractible in the
strong topology as well whenever H is an infinite dimensional Hilbert space.

In the following remark we present a tool which helps to check which central
extensions are equivalent to the trivial extension.

Remark 3.22. Let
1−→ A

ı−→ E
π−→ G−→ 1

be a central extension and let τ : G→ E be a map (not necessarily a homomorphism)
with π ◦ τ = idG and τ(1) = 1. We set τx := τ(x) for x ∈ G and define a map

ω : G×G −→ A∼= ı(A)⊂ E,

(x,y) �−→ τxτyτ−1
xy .

(Here, τ−1
xy = (τxy)−1 = (τ(xy))−1 denotes the inverse element of τxy in the group

E.) This map ω is well-defined since τxτyτ−1
xy ∈ kerπ , and it satisfies

ω(1,1) = 1 and ω(x,y)ω(xy,z) = ω(x,yz)ω(y,z) (3.3)

for x,y,z ∈ G.

Proof. By definition of ω we have

ω(x,y)ω(xy,z) = τxτyτ−1
xy τxyτzτ−1

xyz

= τxτyτzτ−1
xyz

= τxτyτzτ−1
yz τyzτ−1

xyz

= τxω(y,z)τyzτ−1
xyz

= τxτyzτ−1
xyzω(y,z) (A is central)

= ω(x,yz)ω(y,z). �

Definition 3.23. Any map ω : G×G −→ A having the property (3.3) is called a
2-cocycle, or simply a cocycle (on G with values in A).

The central extension of G by A associated with a cocycle ω is given by the exact
sequence

1−→ A
ı−→ A×ω G

pr2−→ G−→ 1,

a �−→ (a,1).

Here, A×ω G denotes the product A×G endowed with the multiplication defined by

(a,x)(b,y) := (ω(x,y)ab,xy)

for (a,x),(b,y) ∈ A×G.
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It has to be shown that this multiplication defines a group structure on A×ω G
for which ı and pr2 are homomorphisms. The crucial property is the associativity of
the multiplication, which is guaranteed by the condition (3.3):

((a,x)(b,y))(c,z) = (ω(x,y)ab,xy)(c,z)

= (ω(xy,z)ω(x,y)abc,xyz)

= (ω(x,yz)ω(y,z)abc,xyz)

= (a,x)(ω(y,z)bc,yz)

= (a,x)((b,y)(c,z)).

The other properties are easy to check.

Remark 3.24. This yields a correspondence between the set of cocycles on G with
values in A and the set of central extensions of G by A.

The extension E in Theorem 3.10

1−→ U(1)−→E
π−→ G−→ 1

is of the type U(1)×ω G. How do we get a suitable map ω : G×G → U(1) in this
situation? For every g ∈G by Wigner’s Theorem 3.3 there is an element Ug ∈U(H)
with γ̂(Ug) = T g. Thus we have a map τg := (Ug,g), g ∈ G, which defines a map
ω : G×G→ U(1) satisfying (3.3) given by

ω(g,h) := τgτhτ−1
gh = (UgUhU−1

gh ,1G).

Note that g �→Ug is not, in general, a homomorphism and also not continuous (if
G is a topological group and T is continuous); however, in particular cases which
turn out to be quite important ones, the Ugs can be chosen to yield a continuous
homomorphism (cf. Bargmann’s Theorem (4.8)).

If G and A are topological groups then for a cocycle ω : G×G→ A which is con-
tinuous the extension A×ω G is a topological group and the inclusion and projection
in the exact sequence are continuous homomorphisms. The reverse implication does
not hold, since continuous maps τ : G → E with π ◦ τ = idG need not exist, in gen-
eral. The central extension p : z �−→ z2

1−→ {+1,−1}−→U(1)
p−→ U(1)−→ 1

provides a simple counterexample. A more involved counterexample is (cf. Propo-
sition 3.17)

1−→ U(1) ı−→ U∼
res

π−→ Ures −→ 1.

Lemma 3.25. Let ω : G×G−→ A be a cocycle. Then the central extension A×ω G
associated with ω splits if and only if there is a map λ : G→ A with
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λ (xy) = ω(x,y)λ (x)λ (y).

Proof. The central extension splits if and only if there is a map σ : G → A×ω G
with pr2 ◦σ = idG which is a homomorphism. Such a map σ is of the form σ(x) :=
(λ (x),x) for x ∈ G with a map λ : G → A. Now, σ is a homomorphism if and only
if for all x,y ∈ G:

σ(xy) = σ(x)σ(y)

⇐⇒ (λ (xy),xy) = (λ (x),x)(λ (y),y)

⇐⇒ (λ (xy),xy) = ((ω(x,y)λ (x)λ (y)),xy)

⇐⇒ λ (xy) = ω(x,y)λ (x)λ (y). �

Definition 3.26.

H2(G,A) := {ω : G×G→ A|ω is a cocycle}/∼,

where the equivalence relation ω ∼ ω ′ holds by definition if and only if there is a
λ : G→ A with

λ (xy) = ω(x,y)ω ′(x,y)−1λ (x)λ (y).

H2(G,A) is called the second cohomology group of the group G with coefficients
in A.

H2(G,A) is an abelian group with the multiplication induced by the pointwise
multiplication of the maps ω : G×G→ A.

Remark 3.27. The above discussion shows that the second cohomology group
H2(G,A) is in one-to-one correspondence with the equivalence classes of central
extensions of G by A.

This is the reason why in the context of quantization of classical field theories
with conformal symmetry Diff+(S)×Diff+(S) one is interested in the cohomology
group H2(Diff+(S),U(1)).

References

Bar64. V. Bargmann. Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5
(1964), 862–868. 43

Diec91*. T. tom Dieck. Topologie. de Gruyter, Berlin, 1991. 54, 55
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Chapter 4
Central Extensions of Lie Algebras
and Bargmann’s Theorem

In this chapter some basic results on Lie groups and Lie algebras are assumed to be
known, as presented, for instance, in [HN91] or [BR77]. For example, every finite-
dimensional Lie group G has a corresponding Lie algebra Lie G determined up to
isomorphism, and every differentiable homomorphism R : G → H of Lie groups
induces a Lie algebra homomorphism Lie R = Ṙ : Lie G → Lie H. Conversely, if
G is connected and simply connected, every such Lie algebra homomorphism ρ :
Lie G → Lie H determines a unique smooth Lie group homomorphism R : G → H
with Ṙ = ρ .

In addition, for the proof of Bargmann’s Theorem we need a more involved result
due to Montgomory and Zippin, namely the solution of one of Hilbert’s problems:
every topological group G, which is a finite-dimensional topological manifold (that
is every x ∈ G has an open neighborhood U with a topological map ϕ : U → R

n), is
already a Lie group (cf. [MZ55]): G has a smooth structure (that is, it is a smooth
manifold), such that the composition (g,h) → gh and the inversion g → g−1 are
smooth mappings.

4.1 Central Extensions and Equivalence

A Lie algebra a is called abelian if the Lie bracket of a is trivial, that is [X ,Y ] = 0
for all X ,Y ∈ a.

Definition 4.1. Let a be an abelian Lie algebra over K and g a Lie algebra over K

(the case of dimg = ∞ is not excluded). An exact sequence of Lie algebra homo-
morphisms

0−→ a−→ h
π−→ g−→ 0

is called a central extension of g by a, if [a,h] = 0, that is [X ,Y ] = 0 for all X ∈ a

and Y ∈ h. Here we identify a with the corresponding subalgebra of h.

For such a central extension the abelian Lie algebra a is realized as an ideal in h

and the homomorphism π : h→ g serves to identify g with h/a.

Schottenloher, M.: Central Extensions of Lie Algebras and Bargmann’s Theorem. Lect. Notes
Phys. 759, 63–73 (2008)
DOI 10.1007/978-3-540-68628-6 5 c© Springer-Verlag Berlin Heidelberg 2008
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Examples:

• Let
1−→ A

I−→ E
R−→ G−→ 1

be a central extension of finite-dimensional Lie groups A, E, and G with differen-
tiable homomorphisms I and R. Then, for İ = Lie I and Ṙ = Lie R the sequence

0−→ Lie A
İ−→ Lie E

Ṙ−→ Lie G−→ 0

is a central extension of Lie algebras.
• In particular, every central extension E of the Lie group G by U(1)

1−→ U(1)−→ E
R−→ G−→ 1

with a differentiable homomorphism R induces a central extension

0−→ R−→ Lie E
Ṙ−→ Lie G−→ 0

of the Lie algebra Lie G by the abelian Lie algebra R∼= i R∼= Lie U(1).
• This holds for infinite dimensional Banach Lie groups and their Banach Lie al-

gebras as well. For example, when we equip the unitary group U(H) with the
norm topology it becomes a Banach Lie group as a real subgroup of the com-
plex Banach Lie group GL(H) of all bounded and complex-linear and invertible
transformations H→H. Therefore, the central extension

1−→ U(1)−→ U(H)
γ̂−→ U(P)−→ 1

in Lemma 3.4 induces a central extension of Banach Lie algebras

0−→ R−→ u(H)−→u(P)−→ 0,

where u(H) is the real Lie algebra if bounded self-adjoint operators on H, and
u(P) is the Lie algebra of U(P)

In the same manner we obtain a central extension

0−→ R−→ u∼res(H)−→ures(H)−→ 0

by differentiating the corresponding exact sequence of Banach Lie groups
(cf. Proposition 3.17).

• A basic example in the context of quantization is the Heisenberg algebra H which
can be defined as the vector space

H := C[T,T−1]⊕CZ

with central element Z and with the algebra of Laurent polynomials C[T,T−1].
(This algebra can be replaced with the algebra of convergent Laurent series C(T )
or with the algebra of formal series C

[[
T,T−1
]]

to obtain the same results as for
C[T,T−1].) H will be equipped with the Lie bracket
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[ f ⊕λZ,g⊕μZ] :=∑k fkg−k Z,

f ,g ∈ C[T,T−1],λ ,μ ∈ C, where f = ∑ fnT n,g = ∑gnT n for the Laurent poly-
nomials f ,g ∈ C[T,T−1] with fn,gn ∈ C. (All the sums are finite and therefore
well-defined, since for f = ∑ fnT n ∈ C[T,T−1] only finitely many of the coeffi-
cients fn ∈ C are different from zero.)

One can easily check that the maps

i : C→ H, λ �→ λZ,

and
pr1 : H→ C[T,T−1], f ⊕λZ �→ f ,

are Lie algebra homomorphisms with respect to the abelian Lie algebra structures
on C and on C[T,T−1]. We thus have defined an exact sequence of Lie algebra
homomorphisms

0−→ C
i−→ H

pr1−→ C[T,T−1]−→ 0 (4.1)

with [λZ,g] = 0. As a consequence, the Heisenberg algebra H is a central exten-
sion of the abelian Lie algebra of Laurent polynomials C[T,T−1] by C.

Note that the Heisenberg algebra is not abelian although it is a central exten-
sion of an abelian Lie algebra.
The map

Θ : C[T,T−1]×C[T,T−1]→ C,( f ,g) �→∑k fkg−k,

is bilinear and alternating.Θ is called a cocycle in this context (cf. Definition 4.4),
and the significance of the cocycle lies in the fact that the Lie algebra structure
on the central extension H is determined by Θ since [ f +λZ,g+μZ] =Θ( f ,g)Z.
The cocycle Θ can also be described by the residue of f g′ at 0 ∈ C:

Θ( f ,g)=−Resz=0 f (z)g′(z).

This can be easily seen by using the expansion of the product f g′:

f g′(T ) = ∑
n∈Z

(

∑
k∈Z

(n− k +1) fkgn−k+1

)

T n.

To describe H in a slightly different way observe that the monomials an := T n,n∈
Z, form a basis of C[T,T−1]. Hence, the Lie algebra structure on the Heisenberg
algebra H is completely determined by

[am,an] = mδm+nZ, [Z,am] = 0.

Here, δk is used as an abbreviation of Kronecker’s δ 0
k .

• Another example which will be of interest in Chap. 10 in order to obtain relevant
examples of vertex algebras is the affine Kac–Moody algebra or current algebra
as a non-abelian generalization of the construction of the Heisenberg algebra. We
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begin with a Lie algebra g over C. For any associative algebra R the Lie algebra
structure on R⊗g is given by

[r⊗a,s⊗b] = rs⊗ [a,b] or [ra,sb] = rs[a,b].

Two special cases are R = C[T,T−1], the algebra of complex Laurent poly-
nomials, and R = C(T ), the algebra of convergent Laurent series. The follow-
ing construction and its main properties are valid for both these algebras and in
the same way also for the algebra of formal Laurent series of C(T ), which is
used in Chap. 10 on vertex algebras. Here, we treat the case R = C[T,T−1] with
the Lie algebra g[T,T−1] = C[T,T−1]⊗ g which is sometimes called the loop
algebra of g.

We fix an invariant symmetric bilinear form on g, that is a symmetric bilinear

(,) : g×g→ C, a,b �→ (a,b),

on g satisfying

([a,b],c) = (a, [b,c]).

The affinization of g is the vector space

ĝ := g[T,T−1]⊕CZ

endowed with the following Lie bracket

[T m⊗a,T n⊗b] := T m+n⊗ [a,b]+m(a,b)δm+nZ,

[T m⊗a,Z] := 0,

for a,b ∈ g and m,n ∈ Z. Using the abbreviations

am := T ma, bn := T nb,

this definition takes the form

[am,bn] = [a,b]m+n +m(a,b)δm+nZ.

It is easy to check that this defines a Lie algebra structure on ĝ and that the two
natural maps

i : C→ ĝ, λ �→ λZ,

pr1 : ĝ→ g[T,T−1], f ⊗a+μZ �→ f ⊗a,

are Lie algebra homomorphisms. We have defined an exact sequence of Lie
algebras

0−→ C
i−→ ĝ

pr1−→ g[T,T−1]−→ 0. (4.2)



4.1 Central Extensions and Equivalence 67

This exact sequence provides another example of a central extension, namely
the affinization ĝ of g as a central extension of the loop algebra g[T,T−1].

In the case of the abelian Lie algebra g = C we are back in the preceding
example of the Heisenberg algebra. As in that example there is a characterizing
cocycle on the loop algebra

Θ : g[T,T−1] × g[T,T−1]→ C,

(T ma,T nb) �→ m(a,b)δn+mZ,

determining the Lie algebra structure on ĝ.
In the particular case of a simple Lie algebra g there exists only one nonvan-

ishing invariant symmetric bilinear form on g (up to scalar multiplication), the
Killing form. In that case the uniquely defined central extension ĝ of the loop
algebra g[T,T−1] is called the affine Kac–Moody algebra of g.

• In a similar way the Virasoro algebra can be defined as a central extension of the
Witt algebra (cf. Chap. 5).

Definition 4.2. An exact sequence of Lie algebra homomorphisms

0−→ a−→ h
π−→ g−→ 0

splits if there is a Lie algebra homomorphism β : g→ h with π ◦β = idg. The ho-
momorphism β is called a splitting map. A central extension which splits is called
a trivial extension, since it is equivalent to the exact sequence of Lie algebra homo-
morphisms

0−→ a−→ a⊕g−→ g−→ 0.

(Equivalence is defined in analogy to the group case, cf. Definition 3.18.)

If, in the preceding examples of central extensions of Lie groups, the exact se-
quence of Lie groups splits in the sense of Definition 3.19 with a differentiable
homomorphism S : G → E as splitting map, then the corresponding sequence of
Lie algebra homomorphisms also splits in the sense of Definition 4.2 with splitting
map Ṡ. In general, the reverse implication holds for connected and simply connected
Lie groups G only. In this case, the sequence of Lie groups splits if and only if the
associated sequence of Lie algebras splits. All this follows immediately from the
properties stated at the beginning of this chapter.

Remark 4.3. For every central extension of Lie algebras

0−→ a−→ h
π−→ g−→ 0,

there is a linear map β : g→ h with π ◦β = idg (β is in general not a Lie algebra
homomorphism). Let

Θ(X ,Y ) := [β (X),β (Y )]−β ([X ,Y ]) f or X ,Y ∈ g.

Then β is a splitting map if and only if Θ= 0.
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It can easily be checked that the map Θ : g×g→ a (depending on β ) always has
the following properties:

1◦ Θ : g×g→ a is bilinear and alternating.
2◦ Θ(X , [Y,Z])+Θ(Y, [Z,X ])+Θ(Z, [X ,Y ]) = 0.

Moreover, h∼= g⊕a as vector spaces by the linear isomorphism

ψ : g×a→ h, X ⊕Y = (X ,Y ) �→ β (X)+Y.

Finally, with the Lie bracket on g⊕a given by

[X ⊕Z,Y ⊕Z′]h := [X ,Y ]g +Θ(X ,Y )

for X ,Y ∈ g and Z,Z′ ∈ a the map ψ is a Lie algebra isomorphism.
The Lie bracket on h can also be written as

[β (X)+Z,β (Y )+Z′] = β ([X ,Y ])+Θ(X ,Y ).

Here, we treat a as a subalgebra of h again.

Definition 4.4. A map Θ : g× g→ a with the properties 1◦ and 2◦ of Remark 4.3
will be called a 2-cocycle on g with values in a or simply a cocycle.

The discussion in Remark 4.3 leads to the following classification.

Lemma 4.5. With the notations just introduced we have

1. Every central extension h of g by a comes from a cocycle Θ : g×g→ a as in 4.3.
2. Every cocycle Θ : g×g→ a generates a central extension h of g by a as in 4.3.
3. Such a central extension splits (and this implies that it is trivial) if and only if

there is a μ ∈ HomK(g,a) with

Θ(X ,Y ) = μ([X ,Y ])

for all X ,Y ∈ g.

Proof.

1. is obvious from the preceding remark.
2. Let h be the vector space h := g⊕a. The bracket

[X ⊕Z,Y ⊕Z′]h := [X ,Y ]g⊕Θ(X ,Y )

for X ,Y ∈ g and Z,Z′ ∈ a is a Lie bracket if and only if Θ is a cocycle. Hence, h

with this Lie bracket defines a central extension of g by a.
3. Let σ : g → h = g⊕ a a splitting map, that is a Lie algebra homomorphism

with π ◦ σ = idg. Then σ has to be of the form σ(X) = X + μ(X), X ∈ g,
with a suitable μ ∈ HomK(g,a). From the definition of the bracket on h,
[σ(X),σ(Y )] = [X ,Y ]+Θ(X ,Y ) for X ,Y ∈ g. Furthermore, since σ is a Lie al-
gebra homomorphism, [σ(X),σ(Y )] = σ([X ,Y ]) = [X ,Y ]+μ([X ,Y ]). It follows
that Θ(X ,Y ) = μ([X ,Y ]). Conversely, if Θ has this form, it clearly satisfies 1◦
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and 2◦. The linear map σ : g→ h = g⊕a defined by σ(X) := X +μ(X), X ∈ g,
turns out to be a Lie algebra homomorphism:

σ([X ,Y ]) = [X ,Y ]g +μ([X ,Y ])
= [X ,Y ]g +Θ(X ,Y )
= [X +μ(X),Y +μ(Y )]h
= [σ(X),σ(Y )]h.

Hence, σ is a splitting map.

Examples of Lie algebras given by a suitable cocycle are the Heisenberg algebra
and the Kac–Moody algebras, see above, and the Virasoro algebra, cf. Chap. 5.

As in the case of groups, the collection of all equivalence classes of central ex-
tensions for a Lie algebra is a cohomology group.

Definition 4.6.

Alt2(g,a) := {Θ : g×g→ a|Θ satisfies condition 1◦}.
Z2(g,a) := {Θ ∈ Alt2(g,a)|Θ satisfies condition 2◦}.
B2(g,a) := {Θ : g×g→ a|∃μ ∈ HomK(g,a) : Θ= μ̃}.
H2(g,a) := Z2(g,a)/B2(g,a).

Here, μ̃ is given by μ̃(X ,Y ) := μ([X ,Y ]) for X ,Y ∈ g.

Z2 and B2 are linear subspaces of Alt2 with B2 ⊂ Z2. The above vector spaces
are, in particular, abelian groups. Z2 is the space of 2-cocycles and H2(g,a) is called
the second cohomology group of g with values in a. We have proven the following
classification of central extensions of Lie algebras.

Remark 4.7. The cohomology group H2(g,a) is in one-to-one correspondence with
the set of equivalence classes of central extensions of g by a.

Cf. Remark 3.27 for the case of group extensions.

4.2 Bargmann’s Theorem

We now come back to the question of whether a projective representation can be
lifted to a unitary representation.

Theorem 4.8 (Bargmann [Bar54]). Let G be a connected and simply connected,
finite-dimensional Lie group with

H2(Lie G,R) = 0.
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Then every projective representation T : G → U(P) has a lift as a unitary repre-
sentation S : G→U(H), that is for every continuous homomorphism T : G→U(P)
there is a continuous homomorphism S : G→ U(H) with T = γ̂ ◦S.

Proof. By Theorem 3.10, there is a central extension E of G and a homomorphism
T̂ : E → U(H), such that the following diagram commutes:

Here, E = {(U,g)∈U(H)×G|γ̂(U) = T g}, π = pr2, and T̂ = pr1. E is a topological
group as a subgroup of the topological group U(H)×G (cf. Proposition 3.11) and T̂
and π are continuous homomorphisms. The lower exact sequence has local contin-
uous sections, as we will prove in Lemma 4.9: For every A ∈ U(P) there is an open
neighborhood W ⊂ U(P) and a continuous map ν : W → U(H) with γ̂ ◦ ν = idW .
Let now V := T−1(W ). Then μ(g) := (ν ◦T (g),g), g ∈ V , defines a local contin-
uous section μ : V → E of the upper sequence because γ̂(ν ◦ T (g)) = T g, that is
(ν ◦T (g),g) ∈ E for g ∈ V . μ is continuous because ν and T are continuous. This
implies that

ψ : U(1)×V → π−1(V )⊂ E, (λ ,g) �→ (λν ◦T (g),g),

is a bijective map with a continuous inverse map

ψ−1(U,g) = (λ (U),g),

where λ (U) ∈ U(1) for U ∈ γ̂−1(W ) is given by the equation U = λ (U)ν ◦ γ̂(U).
Hence, the continuity ofψ−1 is a consequence of the continuity of the multiplication

U(1)×U(H)→ U(H), (λ ,U) �→ λU.

We have shown that the open subset π−1(V ) = (T ◦π)−1(W )⊂ E is homeomor-
phic to U(1)×V . Consequently, E is a topological manifold of dimension 1+dimG.
By using the theorem of Montgomory and Zippin mentioned above, the topological
group E is even a (1+dimG)-dimensional Lie group and the upper sequence

1−→ U(1)−→ E −→ G−→ 1

is a sequence of differentiable homomorphisms.
Now, according to Remark 4.7 the corresponding exact sequence of Lie algebras

0−→ Lie U(1)−→ Lie E −→ Lie G−→ 0
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splits because of the condition H2(Lie G,R) = 0. Since G is connected and simply
connected, the sequence

1−→ U(1)−→ E −→ G−→ 1

splits with a differentiable homomorphism σ : G → E as splitting map: π ◦ σ =
idG. Finally, S := T̂ ◦σ is the postulated lift. S is a continuous homomorphism and
γ̂ ◦ T̂ = T ◦π implies γ̂ ◦S = γ̂ ◦ T̂ ◦σ = T ◦π ◦σ = T ◦ idG = T :

γ
�

Lemma 4.9. γ̂ : U(H)→ U(P) has local continuous sections and therefore can be
regarded as a principal fiber bundle with structure group U(1).

Proof. (cf. [Sim68, p. 10]) For f ∈H let

Vf := {U ∈ U(H) : 〈U f , f 〉 �= 0}.

Then Vf is open in U(H), since U �→U f is continuous in the strong topology. Hence,
U �→ 〈U f , f 〉 is continuous as well. (For the strong topology all maps U �→U f are
continuous by definition.) The set

Wf := γ̂(Vf ) = {T ∈ U(P) : δ (Tϕ,ϕ) �= 0}, ϕ = γ̂( f ),

is open in U(P) since γ̂−1(Wf ) = Vf is open. (The open subsets in U(P) are, by
Definition 3.6, precisely the subsets W ⊂U(P), such that γ̂−1(W )⊂U(H) is open.)
(Wf ) f∈H is, of course, an open cover of U(P). Let

β f : Vf → U(1), U �→ |〈U f , f 〉|
〈U f , f 〉 .

β f is continuous, since U �→ 〈U f , f 〉 is continuous. Furthermore, β f (eiθU) =
e−iθβ f (U) for U ∈ Vf and θ ∈ R, as one can see directly. One obtains a contin-
uous section of γ̂ over Wf by

ν f : Wf → U(H), γ̂(U) �→ β f (U)U.

ν f is well-defined, since U ′ ∈Vf with γ̂(U ′) = γ̂(U), that is U ′ = eiθU , implies

β f (U ′)U ′ = β f (eiθU)eiθU = β f (U)U.
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Now γ̂ ◦ν f = idWf , since

γ̂ ◦ν f (γ̂(U)) = γ̂(β f (U)U) = γ̂(U) for U ∈Vf .

Eventually, ν f is continuous: let V1 ∈ Wf and U1 = ν f (V1) ∈ ν f (Wf ). Then
β f (U1) = 1. Every open neighborhood of U1 contains an open subset

B = {U ∈Vf : ‖Ug j−U1g j‖< ε for j = 1, . . . ,m}

with ε > 0 and g j ∈H, j = 1, . . . ,m. The continuity of β f on Wf implies that there
are further gm+1, . . . ,gn ∈H, ‖g j‖= 1, so that |β f (U)−1|< ε

2 for

U ∈ B′ := {U ∈Vf : ‖Ug j−U1g j‖<
ε
2

for j = 1, . . . ,m, . . . ,n}.

The image D := γ̂(B′) is open, since

γ̂−1(D) =
⋃

λ∈U(1)

{U ∈Vf : ‖Ug j−λU1g j‖<
ε
2

for j = 1, . . . ,n}

is open. (We have shown that the map γ̂ : U(H) → U(P) is open.) Hence, D is an
open neighborhood of V1. ν f is continuous since ν f (D) ⊂ B: for P ∈ D there is a
U ∈ B′ with P = γ̂(U), that is ν f (P) = β f (U)U . This implies

‖ν f (P)g j−U1g j‖ ≤ ‖β f (U)Ug j−β f (U)U1g j‖
+‖(β f (U)−1)U1g j‖

<
ε
2

+
ε
2

for j = 1, . . . ,m, that is ν f (P) ∈ B. Hence, the image ν f (D) of the neighborhood D
of V1 is contained in B.

In spite of this nice result no reasonable differentiable structure seems to be
known on the unitary group U(H) and its quotient U(P) with respect to the strong
topology in order to prove a result which would state that U(H)→ U(P) is a differ-
entiable principal fiber bundle. The difficulty in defining a Lie group structure on the
unitary group lies in the fact that the corresponding Lie algebra should contain the
(bounded and unbounded) self-adjoint operators on H. In contrast to this situation,
with respect to the operator norm topology the unitary group is a Lie group.

E is by construction the fiber product of γ̂ and T . Since γ̂ is locally trivial by
Lemma 4.9 with general fiber U(1), this must also hold for E →G. Exactly this was
needed in the proof of Theorem 4.8, to show that E actually is a Lie group.

Remark 4.10. For every finite-dimensional semi-simple Lie algebra g over K one
can show H2(g,K) = 0 (cf. [HN91]). As a consequence of the above discussion we
thus have the following result which can be applied to the quantization of certain
important symmetries: if G is a connected and simply connected finite-dimensional
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Lie group with semi-simple Lie algebra Lie(G) = g, then every continuous repre-
sentation T : G → U(P) has a lift to a unitary representation. In particular, to every
continuous representation T : SU(N) → U(P) (resp. T : SL(2,C) → U(P)) there
corresponds a unitary representation S : SU(N)→ U(H) (resp. SL(2,C)→ U(H))
with γ̂ ◦S = T .

Note that SL(2,C) is the universal covering group of the proper Lorentz group
SO(3,1) and SU(2) is the universal covering group of the rotation group SO(3).
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Chapter 5
The Virasoro Algebra

In this chapter we describe how the Witt algebra and the Virasoro algebra as its es-
sentially unique nontrivial central extension appear in the investigation of conformal
symmetries. This result has been proven by Gelfand and Fuks in [GF68]. The last
section discusses the question of whether there exists a Lie group whose Lie algebra
is the Virasoro algebra.

5.1 Witt Algebra and Infinitesimal Conformal
Transformations of the Minkowski Plane

The quantization of classical systems with symmetries yields representations of
the classical symmetry group in U(P) (with P = P(H), the projective space of a
Hilbert space H, cf. Chap. 3), that is the so-called projective representations. As
we have explained in Corollary 2.15, the conformal group of R

1,1 is isomorphic to
Diff+(S)×Diff+(S) (here and in the following S := S

1 is the unit circle). Hence,
given a classical theory with this conformal group as symmetry group, one studies
the group Diff+(S) and its Lie algebra first. After quantization one is interested in
the unitary representations of the central extensions of Diff+(S) or Lie (Diff+(S))
in order to get representations in the Hilbert space as we have explained in the pre-
ceding two sections.

The group Diff+(S) is in a canonical way an infinite dimensional Lie group
modeled on the real vector space of smooth vector fields Vect(S). (We will discuss
Vect(S) in more detail below.) Diff+(S) is equipped with the topology of uniform
convergence of the smooth mappings ϕ : S→ S and all their derivatives. This topol-
ogy is metrizable. Similarly, Vect (S) carries the topology of uniform convergence
of the smooth vector fields X : S→ TS and all their derivatives. With this topology,
Vect(S) is a Fréchet space. In fact, Vect(S) is isomorphic to C∞(S,R), as we will
see shortly. The proof that Diff+(S) in this way actually becomes a differentiable
manifold modeled on Vect(S) and that the group operation and the inversion are
differentiable is elementary and can be carried out for arbitrary oriented, compact
(finite-dimensional) manifolds M instead of S (cf. [Mil84]).

Schottenloher, M.: The Virasoro Algebra. Lect. Notes Phys. 759, 75–85 (2008)
DOI 10.1007/978-3-540-68628-6 6 c© Springer-Verlag Berlin Heidelberg 2008
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Since Diff+(S) is a manifold modeled on the vector space Vect(S), the tan-
gent space Tϕ(Diff+(S)) at a point ϕ ∈ Diff+(S) is isomorphic to the vector space
Vect(S). Hence, Vect(S) is also the underlying vector space of the Lie algebra
Lie(Diff+(S)). A careful investigation of the two Lie brackets on Vect(S) – one
from Vect(S), the other from Lie(Diff+(S)) – shows that each Lie bracket is exactly
the negative of the other (cf. [Mil84]). However, this subtle fact is not important for
the representation theory of Lie(Diff+(S)). Consequently, it is usually ignored. So
we set

Lie(Diff+(S)) := Vect(S).

The vector space Vect(S) is – like the space Vect(M) of smooth vector fields
on a smooth compact manifold M – an infinite dimensional Lie algebra over R

with a natural Lie bracket: a smooth vector field X on M can be considered to be a
derivation X : C∞(M)→C∞(M), that is a R-linear map with

X( f g) = X( f )g+ f X(g) for f ,g ∈C∞(M).

The Lie bracket of two vector fields X and Y is the commutator

[X ,Y ] := X ◦Y −Y ◦X ,

which turns out to be a derivation again. Hence, [X ,Y ] defines a smooth vector field
on M. For M = S the space C∞(S) can be described as the vector space C∞

2π(R) of
2π-periodic functions R→R. A general vector field X ∈Vect(S) in this setting has
the form X = f d

dθ , where f ∈C∞
2π(R) and where the points z of S are represented as

z = eiθ , θ being a variable in R. For X = f d
dθ and Y = g d

dθ it is easy to see that

[X ,Y ] = ( f g′ − f ′g)
d

dθ
with g′ =

d
dθ

g and f ′ =
d

dθ
f . (5.1)

The representation of f by a convergent Fourier series

f (θ) = a0 +
∞

∑
n=1

(an cos(nθ)+bn sin(nθ))

leads to a natural (topological) generating system for Vect(S):

d
dθ

, cos(nθ)
d

dθ
, sin(nθ)

d
dθ

.

Of special interest is the complexification

VectC(S) := Vect(S)⊗C

of Vect(S). To begin with, we discuss only the restricted Lie algebra W⊂VectC(S)
of polynomial vector fields on S. Define
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Ln := z1−n d
dz

=−iz−n d
dθ

=−ie−inθ d
dθ

∈ VectC(S),

for n ∈ Z. Ln : C∞(S,C)→C∞(S,C), f �→ z1−n f ′. The linear hull of the Ln over C

is called the Witt algebra:
W := C{Ln : n ∈ Z}.

It has to be shown, of course, that W with the Lie bracket in VectC(S) actually
becomes a Lie algebra over C. For that, we determine the Lie bracket of the Ln,
Lm, which can also be deduced from the above formula (5.1). For n,m ∈ Z and
f ∈C∞(S,C),

LnLm f = z1−n d
dz

(
z1−m d

dz
f

)

= (1−m)z1−n−m d
dz

f − z1−nz1−m d2

dz2 f .

This yields

[Ln,Lm] f = LnLm f −LmLn f

= ((1−m)− (1−n))z1−n−m d
dz

f

= (n−m)Ln+m f .

In a theory with conformal symmetry, the Witt algebra W is a part of the com-
plexified Lie algebra VectC(S)×VectC(S) belonging to the classical conformal
symmetry. Hence, as we explained in the preceding chapter, the central extensions
of W by C become important for the quantization process.

5.2 Witt Algebra and Infinitesimal Conformal
Transformations of the Euclidean Plane

Before we focus on the central extensions of the Witt algebra in Theorem 5.1, an-
other approach to the Witt algebra shall be described. This approach is connected
with the discussion in Sect. 2.4 about the conformal group for the Euclidean plane.
In fact, in the development of conformal field theory in the context of statistical
mechanics mostly the Euclidean signature is used. This point of view is taken, for
example, in the fundamental papers on conformal field theory in two dimensions
(cf., e.g., [BPZ84], [Gin89], [GO89]).

The conformal transformations in domains U ⊂C∼= R
2,0 are the holomorphic or

antiholomorphic functions with nowhere-vanishing derivative (cf. Theorem 1.11).
We will treat only the holomorphic case for the beginning. If one ignores the ques-
tion of how these holomorphic transformations can form a group (cf. Sect. 2.4) and
investigates infinitesimal holomorphic transformations, these can be written as
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z �→ z+ ∑
n∈Z

anzn,

with convergent Laurent series ∑n∈Z anzn. In the sense of the general relation be-
tween Diff+(M) and Vect(M), the vector fields representing these infinitesimal
transformations can be written as

∑anzn+1 d
dz

in the fictional relation between the “conformal group” (see, however, Sect. 5.4) and
the vector fields. The Lie algebra of all these vector fields has the sequence (Ln)n∈Z,
Ln = z1−n d

dz , as a (topological) basis with the Lie bracket derived above:

[Ln,Lm] = (n−m)Ln+m.

Hence, for the Euclidean case there are also good reasons to introduce the Witt
algebra W = C{Ln : n ∈ Z} with this Lie bracket as the conformal symmetry al-
gebra. The Witt algebra is a dense subalgebra of the Lie algebra of holomorphic
vector fields on C \ {0}. The same is true for an annulus {z ∈ C : r < |z| < R},
0 ≤ r < R ≤ ∞. However, only the vector fields Ln with n ≤ 1 can be continued
holomorphically to a neighborhood of 0 in C, the other Ln s are strictly singular at 0.
As a consequence, contrary to what we have just stated the vector fields Ln, n > 1,
cannot be considered to be infinitesimal conformal transformations on a suitable
neighborhood of 0. Instead, these meromorphic vector fields correspond to proper
deformations of the standard conformal structure on R

2,0 ∼= C.
Without having to speak of a specific “conformal group” one can require – as

it is usually done in conformal field theory à la [BPZ84] – that the primary field
operators of a conformal field theory transform infinitesimally according to the Ln

(a condition which will be explained in detail in Sect. 9.3). This symmetry condi-
tion yields an infinite number of constraints. This viewpoint explains the claim of
“infinite dimensionality” in the citations of Sect. 2.4.

Let us point out that there is no complex Lie group H with Lie H = VectC(S) as
is explained in Sect. 5.4.

The antiholomorphic transformations/vector fields yield a copy W of W with
basis Ln, so that

[Ln,Lm] = (n−m)Ln+m and [Ln,Lm] = 0.

For the Minkowski plane one has a copy of the Witt algebra as well, which in
this case originates from the second factor Diff+(S) in the characterization

Conf(R1,1)∼= Diff+(S)×Diff+(S).

In both cases there is a natural isomorphism t : W → W of the Witt algebra,
defined by t(Ln) := −L−n on the basis. t is a linear isomorphism and respects the
Lie bracket:
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[t(Ln), t(Lm)] = [L−n,L−m] =−(n−m)L−(n+m) = (n−m)t(Ln+m).

Hence, t is a Lie algebra isomorphism. Since t2 = idW , t is an involution. These
facts explain that in many texts on conformal field theory the basis

L∼n =−zn+1 d
dz

= t

(
z1−n d

dz

)

instead of Ln = z1−n d
dz is used. Incidentally, the involution t induced on W by the

biholomorphic coordinate change z �→ w = 1
z of the punctured plane C\{0}: dz =

−w−2dw implies

z1−n d
dz

= wn−1(−w2)
d

dw
=−wn+1 d

dw
.

5.3 The Virasoro Algebra as a Central Extension
of the Witt Algebra

After these two approaches to the Witt algebra W we now come to the Virasoro
algebra, which is a proper central extension of W. For existence and uniqueness
we need

Theorem 5.1. [GF68] H2(W,C)∼= C.

Proof. In the following we show: the linear map ω : W×W→ C given by

ω(Ln,Lm) := δn+m
n

12
(n2−1),δk :=

{
1 for k = 0

0 for k �= 0

defines a nontrivial central extension of W by C and up to equivalence this is the
only nontrivial extension of W by C. In order to do this we prove

1. ω ∈ Z2(W,C).

2. ω /∈ B2(W,C).

3. Θ ∈ Z2(W,C)⇒∃λ ∈ C : Θ∼ λω.

Remark: The choice of the factor 1
12 in the definition of ω is in accordance with the

zeta function regularization using the Riemann zeta function, cf. [GSW87, p. 96].

1. Evidently, ω is bilinear and alternating. In order to show ω ∈ Z2(W,C), that is
2◦ of Remark 4.3, we have to check that

ω(Lk, [Lm,Ln])+ω(Lm, [Ln,Lk])+ω(Ln, [Lk,Lm]) = 0



80 5 The Virasoro Algebra

for k,m,n ∈ Z. This can be calculated easily:

12(ω(Lk, [Lm,Ln])+ω(Lm, [Ln,Lk])

+ω(Ln, [Lk,Lm]))

= δk+m+n((m−n)k(k2−1)+(n− k)m(m2−1)

+(k−m)n(n2−1))

= −(m−n)(m+n)((m+n)2−1)

+(2n+m)m(m2−1)

−(2m+n)n(n2−1)

= 0.

2. Assume that there exists μ ∈ HomC(W,C) with ω(X ,Y ) = μ([X ,Y ]) for all
X ,Y ∈W. Then for every n ∈ N we have

ω(Ln,L−n) = μ̃(Ln,L−n)

⇒ n
12 (n2−1) = μ([Ln,L−n])

⇒ n
12 (n2−1) = 2nμ(L0)

⇒ μ(L0) = 1
24 (n2−1).

The last equation cannot hold for every n ∈ N. So the assumption was wrong,
which implies ω /∈ B2(W,C).

3. Let Θ ∈ Z2(W,C). Then for k,m,n ∈ Z we have

0 = Θ(Lk, [Lm,Ln])+Θ(Lm, [Ln,Lk])+Θ(Ln, [Lk,Lm])

= (m−n)Θ(Lk,Lm+n)+(n− k)Θ(Lm,Ln+k)

+(k−m)Θ(Ln,Lk+m).

For k = 0 we get

(m−n)Θ(L0,Lm+n)+nΘ(Lm,Ln)−mΘ(Ln,Lm) = 0.

Hence

Θ(Ln,Lm) =
m−n
m+n

Θ(L0,Lm+n) for m,n ∈ Z; m �=−n.

We define a homomorphism μ ∈ HomC(W,C) by

μ(Ln) : =
1
n
Θ(L0,Ln) for n ∈ Z\{0},

μ(L0) : = −1
2
Θ(L1,L−1),

and let Θ′ :=Θ+ μ̃ . Then Θ′(Ln,Lm) = 0 for m,n ∈ Z,m �=−n, since
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Θ′(Ln,Lm) = Θ(Ln,Lm)+μ([Ln,Lm])

=
m−n
m+n

Θ(L0,Ln+m)+μ((n−m)Ln+m)

=
m−n
m+n

Θ(L0,Ln+m)+
n−m
m+n

Θ(L0,Ln+m)

= 0.

So there is a map h : Z→ C with

Θ′(Ln,Lm) = δn+mh(n) for n,m ∈ Z.

Since Θ′ is alternating, it follows:

h(0) = 0 and h(−k) =−h(k) for all k ∈ Z.

By definition of μ we have

h(1) = Θ′(L1,L−1)
= Θ(L1,L−1)+μ([L1,L−1])
= Θ(L1,L−1)+μ(2L0)
= Θ(L1,L−1)−Θ(L1,L−1)
= 0.

It remains to be shown that there is a λ ∈ C with Θ′ = λω , that is

h(n) =
λ
12

n(n2−1) for n ∈ N. (5.2)

Since Θ′ ∈ Z2(W,C), we have for k,m,n ∈ N,

0 = Θ′(Lk, [Lm,Ln])+Θ′(Lm, [Ln,Lk])

+Θ′(Ln, [Lk,Lm])

= (m−n)Θ′(Lk,Lm+n)+(n− k)Θ′(Lm,Ln+k)

+(k−m)Θ′(Ln,Lk+m).

For k +m+n = 0 we get

0 = (m−n)h(k)+(n− k)h(m)+(k−m)h(n)
= −(m−n)h(m+n)+(2n+m)h(m)
−(2m+n)h(n).

The substitution n = 1 yields the equation

−(m−1)h(m+1)+(2+m)h(m)− (2m+1)h(1) = 0,
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for m ∈ N. Combined with h(1) = 0 this implies the recursion formula

h(m+1) =
m+2
m−1

h(m) for m ∈ N\{1}.

Consequently, the map h is completely determined by h(2) ∈ C. We now show
by induction n ∈ N that for λ := 2h(2) the relation (5.2) holds. The cases n = 1
and n = 2 are obvious. So let m ∈ N, n > 1, and h(m) = λ

12 m(m2−1). Then

h(m+1) =
m+2
m−1

h(m)

=
m+2
m−1

λ
12

m(m2−1)

=
λ
12

m(m+1)(m+2)

=
λ
12

(m+1)((m+1)2−1). �

Definition 5.2. The Virasoro algebra Vir is the central extension of the Witt algebra
W by C defined by ω , that is

Vir = W⊕CZ as a complex vector space,

[Ln,Lm] = (n−m)Ln+m +δn+m
n
12

(n2−1)Z,

[Ln,Z] = 0 for n,m ∈ Z.

5.4 Does There Exist a Complex Virasoro Group?

In Sect. 2.3 we have shown that the conformal group Conf(R2,0) of the Euclidean
plane is not infinite dimensional. Instead, it is isomorphic to the familiar finite-
dimensional group Mb of Möbius transformations which in turn is isomorphic to
the Lorentz group SO(3,1). Here, the conformal group is defined to be the group of
global conformal transformations defined on open dense subsets M ⊂ R

2,0.
It is, however, a fact and an essential feature that in conformal field theory the

infinite dimensional Lie algebra Vir is used as the fundamental set of (infinitesimal)
symmetries. Even if it is impossible to interpret these symmetries as generators of
conformal transformations on open subsets of the euclidean plane (cf. Sect. 2.3) it
is in principle not excluded that there exists an infinite dimensional complex Lie
group G such that the Virasoro algebra Vir is essentially the Lie algebra of G . Such
a Lie group would be called a Virasoro group. Such a group would play the role
of an abstract infinite dimensional conformal group related to the Euclidean plane
embodying all conformal symmetries.
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We are thus led to discuss the following questions:

1. Question: Does there exist a complex Lie group G with the Virasoro algebra Vir
as its Lie algebra?
Closely related to this question are the following two questions.

2. Question: Does there exist a complex Lie group H with the Witt algebra W as
its Lie algebra?

3. Question: Does there exist a real Lie group F such that the Lie algebra of F
is the central extension VirR of the real version WR of the Witt algebra given by
the same cocycle ω as in Theorem 5.1?

The questions have to be formulated in a more precise manner, but the answer to
the first question in its most natural setting is no, as we report in the following.

The questions are not clearly stated in the infinite dimensional setting because an-
swering them requires to specify a topology on Vir since there is no natural topology
on an infinite dimensional complex vector space in contrast to the finite-dimensional
case. Since Vir can be equipped with many different topologies compatible with its
structure of a complex Lie algebra we obtain a series of questions depending on
the topologies considered. The topology to be chosen should be at least a locally
convex topology since there exists a reasonable theory of Lie groups and Lie alge-
bras (cf. [Mil84]) with models in locally convex spaces. However, only for Banach
Lie groups one has an exponential mapping which is a local embedding and thus
gives coordinates. In fact, the nonexistence of a Virasoro group is closely related to
deficiencies of the exponential mapping.

If one considers locally convex topologies on Vir, it is quite natural to require
that the corresponding Lie group has its models in the completion V̂ir of Vir. Con-
sequently, the questions 1–3 have to be refined by asking for Lie groups such that
their Lie algebras are isomorphic as topological Lie algebras to the completions

V̂ir,Ŵ resp. V̂irR.
What is the right topology on Vir and on the other two related Lie algebras?

Regarding the definition of Vir as the central extension of the Witt algebra W and
taking into account the origin of W as a Lie algebra of complex vector fields on S it
is natural to start with the topology on W which is induced from Vect(S)C where on
Vect(S) the natural Fréchet topology on compact convergence of the vector fields
and all its derivatives is considered. The completion Ŵ of W is Vect(S)C, and the
second question reduces to the existence of a complexification of the real Lie group
Diff+(S). By a result of Lempert [Lem97*],

Theorem 5.3. Diff+(S) has no complexification. In particular, there even does not
exist a real Lie group H with Lie H = Ŵ = Vect(S)C.

Of course, the notion of a complexification has to be made precise, in particu-
lar, since in the literature different concepts are used. A (universal) complexification
of a real Lie group G is a complex Lie group GC together with a homomorphism
j : G → GC such that any homomorphism ψ : G → H into a complex Lie group
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H factors uniquely through j, that is there exists a unique complex analytic mor-
phism ψ̂ : GC → H with ψ = ψ̂ ◦ j. Finite-dimensional Lie groups always have a
complexification although the homomorphism need not be injective.

Note that Theorem 5.3 would follow from the conjecture that every homomor-
phism ψ into a complex Lie group H is necessarily trivial. This conjecture is stated
in [PS86*] (3.2.3) using the fact that Diff+(S) is simple according to [Her71]. But
in [PS86*] it is implicitly used that H has a reasonable exponential mapping which
is not true in general.

Therefore, the proof of Theorem 5.3 in [Lem97*] is based on completely differ-
ent methods and the result holds for arbitrary compact and connected manifolds M
of finite dimension ≥ 1 instead of S.

With the same arguments as in [Lem97*] it can be shown that there is no Virasoro
group with respect to the natural topology on Vir induced by the embedding Vir→
Vect(S)C⊕C as vector spaces over C (cf. [Nit06*]):

Theorem 5.4. There does not exist a complex Lie group G with Lie G = V̂ir.

In other words, there does not exist an abstract Virasoro group. On the other
hand, the third question can be answered in the affirmative. There is a real Lie group
F whose Lie algebra is the (real) nontrivial central extension of Vect(S). F is a
nontrivial central extension of Diff+(S) by S

1.
To construct the extension group F we can use the restricted unitary group

Ures(H+) introduced in Definition 3.16. With a suitable choice of H+ ⊂H = L2(S)
(the space of functions f ∈ L2(S) without negative Fourier coefficients) one obtains
a natural embedding of Diff+(S) into Ures(H+) (cf. [PS86*]) and differentiating this
sequence yields a nontrivial central extension

0−→ R−→ Vect(S)∼ −→ Vect(S)−→ 0

of Vect(S)∼= ŴR.
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Chapter 6
Representation Theory of the Virasoro Algebra

Most of the results in this chapter can be found in [Kac80]. A general treat-
ment of the Virasoro algebra and its significance in geometry and algebra is given
in [GR05*].

6.1 Unitary and Highest-Weight Representations

Let V be a vector space over C.

Definition 6.1 (Unitary Representation). A representation ρ : Vir→ EndCV (that
is a Lie algebra homomorphism ρ) is called unitary if there is a positive semi-
definite hermitian form H : V ×V → C, so that for all v,w ∈V and n ∈ Z one has

H(ρ(Ln)v,w) = H(v,ρ(L−n)w),

H(ρ(Z)v,w) = H(v,ρ(Z)w).

Note that this notion of a unitary representation differs from that introduced in
Definition 3.7 where a unitary representation of a topological group G was defined
to be a continuous homomorphism G → U(H) into the unitary group of a Hilbert
space. This is so, because we do not consider any topological structure in Vir.

One requires that ρ(Ln) is formally adjoint to ρ(L−n), to ensure that ρ maps the
generators d

dθ , cos(nθ) d
dθ , sin(nθ) d

dθ (cf. Chap. 5) of the real Lie algebra Vect(S)
to skew-symmetric operators. Since

d
dθ

= iL0, cos(nθ)
d

dθ
= − i

2
(Ln +L−n), and

sin(nθ)
d

dθ
= −1

2
(Ln−L−n),

it follows from H(ρ(Ln)v,w) = H(v,ρ(L−n)w) that

H(ρ(D)v,w)+H(v,ρ(D)w) = 0
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(2008)
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for all

D ∈
{

d
dθ

,cos(nθ)
d

dθ
,sin(nθ)

d
dθ

}
.

So, in principle, these unitary representations of Vir can be integrated to pro-
jective representations Diff+(S)→ U(P(H)) (cf. Sect. 6.5), where H is the Hilbert
space given by (V,H).

Definition 6.2. A vector v∈V is called a cyclic vector for a representation ρ : Vir→
End(V ) if the set

{ρ(X1) . . .ρ(Xm)v : Xj ∈ Vir for j = 1, . . .m ,m ∈ N}

spans the vector space V .

Definition 6.3. A representation ρ : Vir→ End(V ) is called a highest-weight repre-
sentation if there are complex numbers h,c ∈ C and a cyclic vector v0 ∈V , so that

ρ(Z)v0 = cv0,

ρ(L0)v0 = hv0,and

ρ(Ln)v0 = 0 for n ∈ Z,n≥ 1.

The vector v0 is then called the highest-weight vector (or vacuum vector) and V
is called a Virasoro module (via ρ) with highest weight (c,h), or simply a Virasoro
module for (c,h).

Such a representation is also called a positive energy representation if h ≥ 0.
The reason of this terminology is the fact that L0 often has the interpretation of
the energy operator which is assumed to be diagonalizable with spectrum bounded
from below. With this assumption any representation ρ respecting this property sat-
isfies ρ(Ln)v0 = 0 for all n ∈ Z ,n > 0, if v0 is an eigenvector of ρ(L0) with lowest
eigenvalue h ∈ R. This follows from the fact that w = ρ(Ln)(v0) is an eigenvec-
tor of ρ(L0) with eigenvalue h− n or w = 0 as can be seen by using the relation
L0Ln = LnL0−nLn:

ρ(L0)(w) = ρ(Ln)ρ(L0)v0−nρ(Ln)v0 = ρ(Ln)(hv0)−nw = (h−n)w .

Now, since h is the lowest eigenvalue of ρ(L0), w has to vanish for n > 0.
The notation often used by physicists is |h〉 instead of v0 and Ln|h〉 instead of

ρ(Ln)v0 so that, in particular, L0|h〉= h|h〉.

6.2 Verma Modules

Definition 6.4. A Verma module for c,h ∈C is a complex vector space M(c,h) with
a highest-weight representation
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ρ : Vir→ EndC(M(c,h))

and a highest-weight vector v0 ∈M(c,h), so that

{ρ(L−n1) . . .ρ(L−nk)v0 : n1 ≥ . . .≥ nk > 0 , k ∈ N}∪{v0}

is a vector space basis of M(c,h).

Every Verma module M(c,h) yields a highest-weight representation with highest
weight (c,h). For fixed c,h ∈ C the Verma module M(c,h) is unique up to isomor-
phism. For every Virasoro module V with highest weight (c,h) there is a surjective
homomorphism M(c,h)→V , which respects the representation. This holds, since

Lemma 6.5. For every h,c ∈ C there exists a Verma module M(c,h).

Proof. Let

M(c,h) := Cv0⊕
⊕

C{vn1...nk : n1 ≥ . . .≥ nk > 0 , k ∈ Z, k > 0}

be the complex vector space spanned by v0 and vn1,...,nk , n1 ≥ . . .≥ nk > 0. We define
a representation

ρ : Vir→ EndC(M(c,h))

by

ρ(Z) := c idM(c,h),

ρ(Ln)v0 := 0 for n ∈ Z,n≥ 1,

ρ(L0)v0 := hv0,

ρ(L0)vn1...nk :=
(
∑k

j=1 n j +h
)

vn1...nk ,

ρ(L−n)v0 := vn for n ∈ Z,n≥ 1,

ρ(L−n)vn1...nk := vnn1...nk for n≥ n1.

For all other vn1...nk with 1 ≤ n < n1 one obtains ρ(L−n)vn1...nk by permutation,
taking into account the commutation relations [Ln,Lm] = (n−m)Ln+m for n �= m,
e.g., for n1 > n≥ n2:

ρ(L−n)vn1...nk

= ρ(L−n)ρ(L−n1)vn2...nk

= (ρ(L−n1)ρ(L−n)+(−n+n1)ρ(L−(n+n1)))vn2...nk

= vn1nn2...nk +(n1−n)v(n1+n)n2...nk
.

So
ρ(L−n)vn1...nk := vn1nn2...nk +(n1−n)v(n1+n)n2...nk

.

Similarly one defines ρ(Ln)vn1...nk for n ∈ N taking into account the commutation
relations, e.g.,
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ρ(Ln)vn1 :=

⎧
⎪⎨

⎪⎩

0 for n > n1

(2nh+ n
12 (n2−1)c)v0 for n = n1

(n+n1)vn1−n for 0 < n < n1.

Hence, ρ is well-defined and C-linear. It remains to be shown that ρ is a repre-
sentation, that is

[ρ(Ln),ρ(Lm)] = ρ([Ln,Lm]).

For instance, for n≥ n1 we have

[ρ(L0),ρ(L−n)]vn1...nk

= ρ(L0)vnn1...nk −ρ(L−n)
(
∑n j +h

)
vn1...nk

=
(
∑n j +n+h

)
vnn1...nk −

(
∑n j +h

)
vnn1...nk

= nvnn1...nk

= nρ(L−n)vn1...nk

= ρ([L0,L−n])vn1...nk

and for n≥ m≥ n1

[ρ(L−m),ρ(L−n)]vn1...nk

= ρ(L−m)vnn1...nk − vnmn1...nk

= vnmn1...nk +(n−m)v(n+m)n1...nk
− vnmn1...nk (s.o.)

= (n−m)v(n+m)n1...nk

= (n−m)ρ(L−(m+n))vn1...nk

= ρ([L−m,L−n])vn1...nk .

The other identities follow along the same lines from the respective definitions. �

M(c,h) can also be described as an induced representation, a concept which is
explained in detail in Sect. 10.49. To show this, let

B+ := C{Ln : n ∈ Z,n≥ 0}⊕CZ.

B+ is a Lie subalgebra of Vir. Let σ : B+ → EndC(C) be the one-dimensional
representation with σ(Z) := c, σ(L0) := h, and σ(Ln) = 0 for n ≥ 1. Then the rep-
resentation ρ described explicitly above is induced by σ on Vir with representation
module

U(Vir)⊗U(B+) C∼= M(c,h).

(U(g) is the universal enveloping algebra of a Lie algebra g, see Definition 10.45.)

Remark 6.6. Let V be a Virasoro module for c,h ∈C. Then we have the direct sum
decomposition V =

⊕
N∈NVN , where V0 := Cv0 and VN for N ∈ N is, N > 0, the

complex vector space generated by
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ρ(L−n1) . . .ρ(L−nk)v0

with n1 ≥ . . .≥ nk > 0 ,
k

∑
j=1

n j = N , k ∈ N, k > 0.

The VN are eigenspaces of ρ(L0) for the eigenvalue (N +h), that is

ρ(L0) |VN = (N +h)idVN .

This follows from the definition of a Virasoro module and from the commutation
relations of the Lm.

Lemma 6.7. Let V be a Virasoro module for c,h∈C and U a submodule of V . Then

U =
⊕

N∈N0

(VN ∩U).

A submodule of V is an invariant linear subspace of V , that is a complex-linear
subspace U of V with ρ(D)U ⊂U for D ∈ Vir.

Proof. Let w = w0⊕ . . .⊕ws ∈U , where w j ∈Vj for j ∈ {1, . . . ,s}. Then

w = w0 + . . . + ws,
ρ(L0)w = hw0 + . . . + (s+h)ws,

...
ρ(L0)s−1w = hs−1w0 + . . . + (s+h)s−1ws.

This is a system of linear equations for w0, . . . ,ws with regular coefficient matrix.
Hence, the w0, . . . ,ws are linear combinations of the w, . . . ,ρ(L0)s−1w∈U . So w j ∈
Vj ∩U . �

6.3 The Kac Determinant

We are mainly interested in unitary representations of the Virasoro algebra, since the
representations of Vir appearing in conformal field theory shall be unitary. To find a
suitable hermitian form on a Verma module M(c,h), we need to define the notion of
the expectation value 〈w〉 of a vector w∈M(c,h): with respect to the decomposition
M(c,h) =

⊕
VN according to Lemma 6.7, w has a unique component w′ ∈ V0. The

expectation value is simply the coefficient 〈w〉 ∈C of this component w′ for the basis
{v0}, that is w′ = 〈w〉v0. (〈w〉 makes sense for general Virasoro modules as well.)

Let M = M(c,h), c,h ∈ R, be the Verma module with highest-weight represen-
tation ρ : Vir → EndC(M(c,h)) and let v0 be the respective highest-weight vector.
Instead of ρ(Ln) we mostly write Ln in the following. We define a hermitian form
H : M×M → C on the basis {vn1...nk}∪{v0}:
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H(vn1...nk ,vm1...m j) := 〈Lnk . . .Ln1 vm1...m j〉
= 〈Lnk . . .Ln1 L−m1 . . .L−m j v0〉.

In particular, this definition includes

H(v0,v0) := 1 and H(v0,vn1...nk) := 0 =: H(vn1...nk ,v0).

The condition c,h ∈ R implies H(v,v′) = H(v′,v) for all basis vectors

v,v′ ∈ B := {vn1...nk : n1 ≥ . . .≥ nk > 0}∪{v0}.

The elementary but lengthy proof of this statement consists in a repeated use of
the commutation relations of the Lns. Now, the map H : B×B→R has an R-bilinear
continuation to M×M, which is C-antilinear in the first and C-linear in the second
variable:

For w,w′ ∈ M with unique representations w = ∑λ jw j, w′ = ∑μkw′k relative to
basis vectors w j,w′k ∈ B, one defines

H(w,w′) :=∑∑λ jμkH(w j,w
′
k).

H : M×M→C is a hermitian form. However, it is not positive definite or positive
semi-definite in general. Just in order to decide this, the Kac determinant is used. H
has the following properties:

Theorem 6.8. Let h,c ∈ R and M = M(c,h).

1. H : M×M →C is the unique hermitian form satisfying H(v0,v0) = 1, as well as
H(Lnv,w) = H(v,L−nw) and H(Zv,w) = H(v,Zw) for all v,w ∈M and n ∈ Z.

2. H(v,w) = 0 for v ∈ VN, w ∈ VM with N �= M, that is the eigenspaces of L0 are
pairwise orthogonal.

3. kerH is the maximal proper submodule of M.

Proof.

1. That the identity
H(Lnv,w) = H(v,L−nw)

holds for the hermitian form introduced above can again be seen using the com-
mutation relations. The uniqueness of such a hermitian form follows immedi-
ately from

H(vn1...nk ,vm1...m j) = H(v0,Lnk . . .Ln1 vm1...m j).

2. For n1 + . . . + nk > m1 + . . . + m j the commutation relations of the Ln imply
that Lnk . . .Ln1 L−m1 . . .L−m j v0 can be written as a sum ∑Plv0, where the op-
erator Pl begins with an Ls, s ∈ Z, s ≥ 1, that is Pl = QlLs. Consequently,
H(vn1...nk ,vm1...m j) = 0.

3. kerH := {v ∈ M : H(w,v) = 0 ∀w ∈ M} is a submodule, because v ∈ kerH
implies Lnv ∈ kerH since H(w,Lnv) = H(L−nw,v) = 0. Naturally, M �= kerH
because v0 /∈ kerH. Let U ⊂M be an arbitrary proper submodule. To show U ⊂
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kerH, let w∈U . For n1 ≥ . . .≥ nk > 0 one has H(vn1...nk ,w)= H(v0,Lnk . . .Ln1 w).
Assume H(vn1...nk ,w) �= 0. Then 〈Lnk . . .Ln1 w〉 �= 0. By Lemma 6.7 this implies
v0 ∈ U (because Lnk . . .Ln1 w ∈ U), and also vm1...m j ∈ U , in contradiction to
M �= U . Similarly we get H(v0,w) = 0, so w ∈ kerH. �

Remark 6.9. M(c,h)
/

kerH is a Virasoro module with a nondegenerate hermitian
form H. However, H is not definite, in general.

Corollary 6.10. If H is positive semi-definite then c≥ 0 and h ≥ 0.

Proof. For n ∈ N, n > 0, we have

H(vn,vn) = H(v0,LnL−nv0)
= H(v0,ρ([Ln,L−n])v0)

= 2nh+
n
12

(n2−1)c.

H(v1,v1)≥ 0 implies h≥ 0. Then, from H(vn,vn)≥ 0 we get 2nh+ n
12 (n2−1)c≥ 0

for all n ∈ N, hence c≥ 0. �

Definition 6.11. Let P(N) := dimCVN and {b1, . . . ,bP(N)} be a basis of VN . We
define matrices AN by AN

i j := H(bi,b j) for i, j ∈ {1, . . . ,P(N)}.

Obviously, H is positive semi-definite if all these matrices AN are positive semi-
definite. For N = 0 and N = 1 one has A0 = (1) and A1 = (h) relative to the bases
{v0} and {v1}, respectively. V2 has {v2,v1,1} (v2 = L−2v0 and v1,1 = L−1L−1v0) as
basis. For instance,

H(v2,v2) = 〈L2L−2v0〉 = 〈L−2L2v0 +4L0v0 +
2

12
3cv0〉

= 4h+
1
2

c,

H(v1,1,v1,1) = 8h2 +4h,

H(v2,v1,1) = 6h.

Hence, the matrix A2 relative to {v2,v1,1} is

A2 =
(

4h+ 1
2 c 6h

6h 8h2 +4h.

)

A2 is (for c≥ 0 and h≥ 0) positive semi-definite if and only if

detA2 = 2h(16h2−10h+2hc+ c)≥ 0.

This condition restricts the choice of h ≥ 0 and c ≥ 0 even more if H has to be
positive semi-definite. In the case c = 1

2 , for instance, h must be outside the interval
] 1

16 , 1
2 [. (Taking into account the other AN , h can only have the values 0, 1

16 , 1
2 ; for

these values H is in fact unitary, see below.)
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Theorem 6.12. [Kac80] The Kac determinant det AN depends on (c,h) as follows:

det AN(c,h) = KN ∏
p,q∈N

pq≤N

(h−hp,q(c))P(N−pq),

where KN ≥ 0 is a constant which does not depend on (c,h), the P(M) is an in
Definition 6.11, and

hp,q(c) :=
1

48
((13− c)(p2 +q2)+

√
(c−1)(c−25)(p2−q2)

−24pq−2+2c).

A proof can be found in [KR87] or [CdG94], for example.
To derive detAN(c,h) > 0 for all c > 1 and h > 0 from Theorem 6.12, it makes

sense to define

ϕq,q := h−hq,q(c),
ϕp,q := (h−hp,q(c))(h−hq,p(c)), p �= q.

Then by Theorem 6.12 we have

det AN(c,h) = KN ∏
p,q∈N

pq≤N,p≤q

(ϕp,q)P(N−pq).

For 1≤ p,q≤ N and c > 1, h > 0 one has

ϕq,q(c) = h+
1
24

(c−1)(q2−1) > 0,

ϕp,q(c) =

(

h−
(

p−q
2

)2
)2

+
1

24
h(p2 +q2−2)(c−1)

+
1

576
(p2−1)(q2−1)(c−1)2

+
1
48

(c−1)(p−q)2(pq+1) > 0.

Hence, det AN(c,h) > 0 for all c > 1, h > 0.
So the hermitian form H is positive definite for the entire region c > 1, h > 0 if

there is just one example M(c,h) with c > 1, h > 0, such that H is positive definite.
We will find such an example in the context of string theory (cf. Theorem 7.11).

The investigation of the region 0 ≤ c < 1, h ≥ 0 is much more difficult. The
following theorem contains a complete description:

Theorem 6.13. Let c,h ∈ R.

1. M(c,h) is unitary (positive definite) for c > 1,h > 0.
1a. M(c,h) is unitary (positive semi-definite) for c≥ 1,h≥ 0.
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2. M(c,h) is unitary for 0 ≤ c < 1 , h > 0 if and only if there exists some m ∈
N, m > 0, so that c = c(m) and h = hp,q(m) for 1≤ p≤ q < m with

hp,q(m) :=
((m+1)p−mq)2−1

4m(m+1)
, m ∈ N,

c(m) := 1− 6
m(m+1)

, m ∈ N\{1}.

For the proof of 2: Using the Kac determinant, Friedan, Qiu, and Shenker have
shown in [FQS86] that in the region 0≤ c < 1 the hermitian form H can be unitary
only for the values of c = c(m) and h = hp,q(m) stated in 2. Goddard, Kent, and Olive
have later proven in [GKO86], using Kac–Moody algebras, that M(c,h) actually
gives a unitary representation in all these cases.

If M(c,h) is unitary and positive semi-definite, but not positive definite, we let

W (c,h) := M(c,h)/kerH.

Now W (c,h) is a unitary highest-weight representation (positive definite).

Remark 6.14. Up to isomorphism, for every c,h ∈ R there is at most one positive
definite unitary highest-weight representation, which must be W (c,h). If ρ : Vir→
EndC(V ) is a positive definite unitary highest-weight representation with vacuum
vector v′0 ∈V and hermitian form H ′, the map

v0 �→ v′0, vn1...nk �→ ρ(L−n1 . . .L−nk)v0,

defines a surjective linear homomorphism ϕ : M(c,h)→V , which respects the her-
mitian forms H and H ′:

H ′(ϕ(v),ϕ(w)) = H(v,w).

Therefore, H is positive semi-definite and ϕ factorizes over W (c,h) as a homomor-
phism ϕ : W (c,h)→V .

6.4 Indecomposability and Irreducibility of Representations

Definition 6.15. M is indecomposable if there are no invariant proper subspaces
V,W of M, so that M = V ⊕W . Otherwise M is decomposable.

Definition 6.16. M is called irreducible if there is no invariant proper subspace V of
M. Otherwise M is called reducible.
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Theorem 6.17. For each weight (c,h) we have the following:

1. The Verma module M(c,h) is indecomposable.
2. If M(c,h) is reducible, then there is a maximal invariant subspace I(c,h), so that

M(c,h)
/

I(c,h) is an irreducible highest-weight representation.
3. Any positive definite unitary highest-weight representation (that is W(c,h), see

above) is irreducible.

Proof.

1. Let V,W be invariant subspaces of M = M(c,h), and M =V⊕W . By Remark 6.7,
we have the direct sum decompositions

V =
⊕

(Mj ∩V ) and W =
⊕

(Mj ∩W ).

Since dimM0 = 1, this implies (M0 ∩V ) = 0 or (M0 ∩W ) = 0. So the highest-
weight vector v0 is contained either in V or in W . From the invariance of V and
W it follows that V = M or W = M.

2. Let I(c,h) be the sum of the invariant proper subspaces of M. Then I(c,h) is
an invariant proper subspace of M and M(c,h)

/
I(c,h) is an irreducible highest-

weight representation.
3. Let V be a positive definite unitary highest-weight representation and U � V be

an invariant subspace. Then

U⊥ = {v ∈V : H(u,v) = 0 ∀u ∈U}

is an invariant subspace as well, since

H(u,Lnv) = H(L−nu,v) = 0

and U ⊕U⊥ = V . So 3 follows from 1. �

6.5 Projective Representations of Diff+(S)

We know the unitary representations ρc,h : Vir → End(Wc,h) for c ≥ 1,h ≥ 0 or
c = c(m), h = hp,q(m) from the discrete series, where Wc,h := W (c,h) is the unique
unitary highest-weight representation of the Virasoro algebra Vir described in the
preceding section. Let H := Ŵc,h be the completion of Wc,h with respect to its her-
mitean form. It can be shown that there is a linear subspace W̃c,h ⊂H, Wc,h ⊂ W̃c,h,
so that ρc,h(ξ ) has a linear continuation ρc,h(ξ ) on W̃c,h for all ξ ∈ Vir∩ (Vect(S)),
where ρc,h(ξ ) is an essentially self-adjoint operator. The representation ρc,h is inte-
grable in the following sense:

Theorem 6.18. [GW85] There is a projective unitary representation Uc,h : Diff+(S)
→U(P(H)), so that
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γ̂(exp(ρc,h(ξ ))) = Uc,h(exp(ξ ))

for all ξ ∈ Vect(S), that is for all real vector fields ξ in S. Furthermore, for X ∈
Vect(S)⊗C and ϕ ∈ Diff+(S) one has

Uc,h(ϕ)ρc,h(X) = (ρc,h(TϕX)+ cα(X ,ϕ))Uc,h(ϕ)

with a map α on Vect(S)×Diff+(S). Here, the Uc,h(ϕ) are suitable lifts to H of the
original Uc,h(ϕ) (cf. Chap. 3).

Further investigations in the setting of conformal field theory lead to representa-
tions of

• “chiral” algebras A ×A with Vir ⊂ A , Vir ⊂ A (here Vir is an isomorphic
copy of Vir and A as well as A are further algebras), e.g., A = U(ĝ) (univer-
sal enveloping algebra of a Kac–Moody algebra), but also algebras, which are
neither Lie algebras nor enveloping algebras of Lie algebras. (Cf., e.g., [BPZ84],
[MS89], [FFK89], [Gin89], [GO89].)

• Semi-groups E ×E with Diff+(S)⊂ E , Diff+(S)⊂ E . One discusses semi-group
extensions Diff+(S), because there is no complex Lie group with VectC(S) as
the associated Lie algebra (cf. 5.4). Interesting cases in this context are the semi-
group of Shtan and the semi-group of Neretin which are considered, for instance,
in [GR05*].

We just present a first example of such a semi-group here (for a survey cf.
[Gaw89]):

Example 6.19. Let q ∈ C, τ ∈ C, q = exp(2πiτ), |q| < 1, and Σq = {z ∈ C||q| ≤
|z| ≤ 1} be the closed annulus with outer radius 1 and inner radius |q|. Let g1,g2 ∈
Diff+(S) be real analytic diffeomorphisms on the circle S. Then one gets the fol-
lowing parameterizations of the boundary curves of Σq:

p1(eiθ ) := qg1(eiθ ), p2(eiθ ) := g2(eiθ ).

The mentioned semi-group E is the quotient of E0, where E0 is the set of pairs
(Σ , p′) of Riemann surfaces Σ with exactly two boundary curves parameterized by
p′ = (p′1, p′2), for which there is a q ∈ C and a biholomorphic map ϕ : Σq → Σ
(where p1, p2 is a parameterization of ∂Σq as above), so that ϕ ◦ p j = p′j. As a
set one has E = E0

/
∼, where ∼ means biholomorphic equivalence preserving the

parameterization. The product of two equivalence classes [(Σ , p′)], [(Σ ′, p′′)] ∈ E is
defined by “gluing” Σ and Σ ′, where we identify the outer boundary curve of Σ with
the inner boundary curve of Σ ′ taking into account the parameterizations.
The ansatz

Ac,h([Σq, p]) := const Uc,h(g−1
2 )qexp(ρc,h(L0))Uc,h(g1)

leads to a projective representation of E using Theorem 6.18.
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More general semi-groups can be obtained by looking at more general Riemann
surfaces, that is compact Riemann surfaces with finitely many boundary curves,
which are parameterized and divided into incoming (“in”) and outgoing (“out”)
boundary curves. The semi-groups defined in this manner have unitary representa-
tions as well (cf. [Seg91], [Seg88b], and [GW85]). Starting with these observations,
Segal has suggested an interesting set of axioms to describe conformal field theory
(cf. [Seg88a]).
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Chapter 7
String Theory as a Conformal Field Theory

We give an exposition of the classical system of a bosonic string and its quantization.
In bosonic string theory as a classical field theory we have the flat semi-

Riemannian manifold

(RD,η) with η = diag(−1,1, . . . ,1)

as background space and a world sheet in this space, that is a C∞-parameterization

x : Q→ R
D

of a surface W = x(Q) ⊂ R
D, where Q ⊂ R

2 is an open or closed rectangle. This
corresponds to the idea of a one-dimensional object, the string, which moves in the
space R

D and wipes out the two-dimensional surface W = x(Q). The classical fields
(that is the kinematic variables of the theory) are the components xμ : Q→ R of the
parameterization x = (x0,x1, . . . ,xD−1) : Q→ R

D of the surface W = x(Q)⊂ R
D.

7.1 Classical Action Functionals and Equations
of Motion for Strings

In classical string theory the admissible parameterizations, that is the dynamic vari-
ables of the world sheet, are those for which a given action functional is stationary.
A natural action of the classical field theory uses the “area” of the world sheet. One
defines the so-called Nambu–Goto action:

SNG(x) :=−κ
∫

Q

√
−detg dq0dq1,

with a constant κ ∈ R (the “string tension”, cf. [GSW87]). Here,

g := x∗η ,(x∗η)μν = ηi j∂μxi∂νx j,

is the metric on Q induced by x : Q→ R
D and the variation is taken only over those

parameterizations x, for which g is a Lorentz metric (at least in the interior of Q),
that is

Schottenloher, M.: String Theory as a Conformal Field Theory. Lect. Notes Phys. 759, 103–120
(2008)
DOI 10.1007/978-3-540-68628-6 8 c© Springer-Verlag Berlin Heidelberg 2008



104 7 String Theory as a Conformal Field Theory

det(gμν) < 0.

Hence, (Q,g) is a two-dimensional Lorentz manifold, that is a two-dimensional
semi-Riemannian manifold with a Lorentz metric g.

From the action principle

d
dε

SNG(x+ εy)|ε=0 = 0

with suitable boundary conditions, one derives the equations of motion. Since it is
quite difficult to make calculations with respect to the action SNG, one also uses a
different action, which leads to the same equations of motion. The Polyakov action

SP(x,h) :=−κ
2

∫

Q

√
−det h hi j gi j dq0 dq1

depends, in addition, on a (Lorentz) metric h on Q. A separate variation of SP with
respect to h only leads to the former action SNG:

Lemma 7.1.
d

dε
SP(x,h+ ε f )|ε=0 = 0

holds precisely for those Lorentzian metrics h on Q which satisfy g = λh, where
λ : Q→ R+ is a smooth function. Substitution of h = 1

λ g into SP yields the original
action SNG.

Proof. In order to show the first statement let (h̃i j) be the matrix satisfying

2deth = h̃i jhi j, hi j = (deth)−1h̃i j.

Then h̃00 = h11, h̃11 = h00, and h̃01 =−h10. Hence,

√
−det(h+ ε f )(h+ ε f )i j =−(

√
−det(h+ ε f ))−1 ˜(h+ ε f )

i j

for symmetric f = ( fi j) with det(h+ ε f ) < 0, and it follows

SP(x,h+ ε f ) =
κ
2

∫

Q
(
√
−det(h+ ε f ))−1(h̃i j + ε f̃ i j)gi jdq0dq1.

Since hi j =−(−deth)−1h̃i j and h̃αβ fαβ = f̃ αβhαβ , we have

∂
∂ε

SP(x,h+ ε f )
∣
∣
∣
∣
ε=0

=
κ
2

∫

Q

(
f̃ i j

√
−deth

+
h̃i j f̃ αβhαβ

2
√
−deth

3

)

gi jdq0dq1

=
κ
2

∫

Q

f̃ i j
√
−deth

(
gi j−

1
2

hαβgαβhi j

)
dq0dq1.
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This implies that δSP(x,h) = 0 for fixed x leads to the “equation of motion”

gi j−
1
2

hαβgαβhi j = 0 (7.1)

for h. Equivalently, the energy–momentum tensor

Ti j := gi j−
1
2

hαβgαβhi j (7.2)

has to vanish. The solution h of (7.1) is g = λh with

λ =
1
2

hαβgαβ > 0

(λ > 0 follows from detg < 0 and deth < 0).
Substitution of the solution h = 1

λ g of the equation T = 0 in the action SP(x,h)
yields the original action SNG(x). �

Invariance of the Action. It is easy to show that the action SP is invariant with
respect to

• Poincaré transformations,
• Reparameterizations of the world sheet, and
• Weyl rescalings: h �→ h′ :=Ω2h.

SNG is invariant with respect to Poincaré transformations and reparameteriza-
tions only.

Because of the invariance with respect to reparameterizations, the action SP can
be simplified by a suitable choice of parameterization. To achieve this, we need the
following theorem:

Theorem 7.2. Every two-dimensional Lorentz manifold (M,g) is conformally flat,
that is there are local parameterizations ψ , such that for the induced metric g
one has

ψ∗g =Ω2η =Ω2
(
−1 0
0 1

)
(7.3)

with a smooth function Ω. Coordinates for which the metric tensor is of this form
are called isothermal coordinates.

For a positive definite metric g (on a surface) the existence of isothermal coor-
dinates can be derived from the solution of the Beltrami equation (cf. [DFN84, p.
110]). In the Lorentzian case the existence of isothermal coordinates is much easier
to prove. Since the issue of existence of isothermal coordinates has been neglected in
the respective literature and since it seems to have no relation to the Beltrami equa-
tion, a proof shall be provided in the sequel. A proof can also be found in [Dic89].

Proof. 1 Let x ∈ M and let ψ : R
2 ⊃ U → M be a chart for M with x ∈ ψ(U).

We denote the matrix representing ψ∗g by gμν ∈C∞(U,R). If we choose a suitable
linear map A∈GL(R2) and replaceψ withψ ◦A : A−1(U)→M, we can assume that

1 By A. Jochens
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(gμν(ξ )) = η =
(
−1 0
0 1

)
,

where ξ := ψ−1(x). We also have

det(gμν) = g11g22−g2
12 < 0

since g is a Lorentz metric. We define

a :=
√

g2
12−g11g22 ∈C∞(U,R).

By our choice of the chart ψ we have g22(ξ ) = 1. The continuity of g22 implies
that there is an open neighborhood V ⊂U of ξ with g22(ξ ′) > 0 for ξ ′ ∈V .

Now, there are two positive integrating factors λ ,μ ∈C∞(V ′,R+) and two func-
tions F,G ∈C∞(V ′,R) on an open neighborhood V ′ ⊂V of ξ , so that

∂1F = λ
√

g22, ∂2F = λ
g12 +a
√

g22
,

∂1G = μ
√

g22, ∂2G = μ
g12−a
√

g22
.

The existence of F and λ can be shown as follows: we apply to the function
f ∈C∞(V,R) defined by

f (t,x) := (g12(x, t)+a(x, t))/g22(x, t)

a theorem of the theory of ordinary differential equations, which guarantees the
existence of a family of solutions depending differentiably on the initial conditions
(cf. [Die69, 10.8.1 and 10.8.2]). By this theorem, we get an open interval J ⊂ R

and open subsets U0,U ⊂ R with ξ ∈U0 × J ⊂U × J ⊂ V , as well as a map φ ∈
C∞(J× J×U0,U), so that for all t,s ∈ J and x ∈U0 we have

d
dt
φ(t,s,x) = f (t,φ(t,s,x)) and φ(t, t,x) = x. (7.4)

Using the uniqueness theorem for ordinary differential equations, it can be shown
that ∂3φ is positive and that

φ(τ, t,x) ∈U0 ⇒ φ(s,τ,φ(τ, t,x)) = φ(s, t,x)

for t,s,τ ∈ J and x ∈U0. Defining

F(x, t) := φ(t0, t,x) and λ (x, t) :=
∂1F(x, t)
√

g22(x, t)
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for (x, t) ∈U0× J and a fixed t0 ∈ J we obtain functions F,λ ∈C∞(U0× J,R) with
the required properties. By the same argument we also obtain the functions G and
μ . The open subset V ′ ⊂V is the intersection of the domains of F and G.

For the map ϕ =
(
ϕ1

ϕ2

)
:=
(

F−G
F +G

)
∈C∞(V ′,R2) we have

∂1ϕ1 = (λ −μ)
√

g22, ∂2ϕ1 = λ
g12 +a
√

g22
−μ

g12−a
√

g22
,

∂1ϕ2 = (λ +μ)
√

g22, ∂2ϕ2 = λ
g12 +a
√

g22
+μ

g12−a
√

g22
.

After a short calculation we get

∂μϕρ∂νϕσηρσ = ∂μϕ1∂νϕ1−∂μϕ2∂νϕ2 = 4λμgμν ,

that is ϕ∗η = 4λμψ∗g. Furthermore,

detDϕ = ∂1ϕ1∂2ϕ2−∂1ϕ2∂2ϕ1 =−4λμa �= 0.

Hence, by the inverse mapping theorem there exists an open neighborhood
W ⊂V ′ of ξ , so that ϕ̃ := ϕ|W : W → ϕ(W ) is a C∞ diffeomorphism. ϕ∗η =
4λμψ∗g implies

η =
(
ϕ̃−1)∗ϕ∗η = 4λμ

(
ϕ̃−1)∗ψ∗g = 4λμ

(
ψ ◦ ϕ̃−1)∗ g.

Now ψ̃ := ψ ◦ ϕ̃−1 : ϕ(W )→M is a chart for M with x ∈ ψ̃(ϕ(W )) and we have

ψ̃∗g =Ω2η

with Ω := 1/(2
√
λμ). �

By Theorem 7.2 one can choose a local parameterization of the world sheet in
such a way that

h =Ω2η =Ω2
(
−1 0
0 1

)
.

This fixing of h is called conformal gauge. Even after conformal gauge fixing a
residual symmetry remains: it is easy to see that SP(x) in conformal gauge is invari-
ant with respect to conformal transformations on the world sheet. In this manner,
the conformal group Conf(R1,1)∼= Diff+(S)×Diff+(S) turns out to be a symmetry
group of the system, even if this holds only on the level of “constraints”. In any
case, the classical field theory of the bosonic string can be viewed as a conformally
invariant field theory.

To simplify the equations of motion and, furthermore, to present solutions as cer-
tain Fourier series, we need a generalization of Theorem 7.2, stating that (in the case
of closed strings, to which we restrict our discussion here) there exists a conformal
gauge not only in a neighborhood of any given point, but also in a neighborhood
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of a closed injective curve (as a starting curve for the “time τ = 0”). The existence
of such isothermal coordinates can be shown by the same argumentation as Theo-
rem 7.2. Finally, for the variation in the conformal gauge, it can be assumed that
isothermal coordinates exist on the rectangle

Q = [0,2π]× [0,2π]

and that σ �→ x(0,σ), σ ∈ [0,2π] describes a simple closed curve. This is possible
at least up to an irrelevant distortion factor (cf. [Dic89]).

Theorem 7.3. The variation of SNG or SP in the conformal gauge leads to the equa-
tions of motion on Q = [0,2π]× [0,2π]: These are the two-dimensional wave equa-
tions

∂ 2
0 x−∂ 2

1 x = 0 resp. xττ − xσσ = 0

with the constraints

〈xσ ,xτ〉= 0 = 〈xσ ,xσ 〉+ 〈xτ ,xτ〉, 〈xτ ,xτ〉< 0,

imposed by the conformal gauge.

By xσ we denote the partial derivative of x = x(τ,σ) with respect to σ (that is
τ := q0,σ := q1), and 〈v,w〉 is the inner product 〈v,w〉= vμwνημν for v,w ∈ R

D.

Proof. To derive the equations of motion and the constraints we start by writing SP

in the conformal gauge h =Ω2η with
√
−deth =Ω2 and hi jgi j =Ω2(−g00 +g11):

SP(x) = SP(x,Ω 2η) =
κ
2

∫

Q
(〈∂0x,∂0x〉−〈∂1x,∂1x〉)dq0dq1.

For y : Q→ R
D and suitable boundary conditions y|∂Q = 0 we have

∂
∂ε

SP(x+ εy)
∣
∣
∣
∣
ε=0

= κ
∫

Q
(〈∂0x,∂0y〉−〈∂1x,∂1y〉)dq0dq1

= κ
∫

Q
〈∂11x−∂00x,y〉dq0dq1

(integration by parts). This yields

∂11x−∂00x = 0

as the equations of motion in the conformal gauge.

Because of the description of the metric h by h = 1
λ g with λ > 0, that is

λh = λ (hi j) =
(
〈xτ ,xτ〉 〈xσ ,xτ〉
〈xτ ,xσ 〉 〈xσ ,xσ 〉

)
,

the gauge fixing h =Ω2η implies the conditions

〈xσ ,xτ〉= 0, 〈xσ ,xσ 〉=−〈xτ ,xτ〉> 0. �
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The constraints are equivalent to the vanishing of the energy–momentum T ,
which is given by

Ti j = 〈xi,x j〉−
1
2

hi jh
kl〈xk,xl〉, i, j,k, l ∈ {τ,σ}

(see (7.2) and cf. [GSW87, p. 62ff]).
The solutions of the two-dimensional wave equations are

x(τ,σ) = xR(τ−σ)+ xL(τ+σ)

with two arbitrary differentiable maps xR and xL on Q with values in R
D. For the

closed string we get on Q := [0,2π]× [0,2π] (that is x(τ,σ) = x(τ,σ + 2π)) the
following Fourier series expansion:

xμR(τ−σ) =
1
2

xμ0 +
1

4πκ
pμ0 (τ−σ)+

i√
4πκ ∑n �=0

1
n
αμ

n e−in(τ−σ),

xμL (τ+σ) =
1
2

xμ0 +
1

4πκ
pμ0 (τ+σ)+

i√
4πκ ∑n �=0

1
n
αμ

n e−in(τ+σ). (7.5)

x0 and p0 can be interpreted as the center of mass and the center of momentum,
respectively, while αμ

n , αν
n are the oscillator modes of the string. xL and xR are

viewed as “left movers” and “right movers”. We have xμ0 , pμ0 ∈ R and αμ
n ,αν

m ∈ C.
αν

m is not the complex conjugate of αν
m, but completely independent of αν

m. For xR

and xL to be real, it is necessary that

(αμ
n )∗ =
(
αμ
−n

)
and (αμ

n )∗ =
(
αμ
−n

)
(7.6)

hold for all μ ∈ {0, . . . ,D− 1} and n ∈ Z \ {0}, where c �→ c∗ denotes the com-
plex conjugation. We let αμ

0 := αμ
0 := 1√

4πκ pμ0 . The x = xL + xR with (7.5) can be
written as

x(σ ,τ) = x0 +
2√
4πκ

α0τ+
i√

4πκ ∑n �=0

1
n

(
αne−in(τ−σ) +αne−in(τ+σ)

)
.

Hence, arbitrary αn,αn,x0, p0 with (7.6) yield solutions of the one-dimensional
wave equation. In order that these solutions are, in fact, solutions of the equations
of motion for the actions SNG or SP, they must, in addition, respect the conformal
gauge. Using

Ln :=
1
2 ∑k∈Z

〈αk,αn−k〉 and Ln :=
1
2 ∑k∈Z

〈αk,αn−k〉 for n ∈ Z, (7.7)

the gauge condition can be expressed as follows:
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Lemma 7.4. A parameterization x(τ,σ) = xL(τ − σ) + xR(τ + σ) of the world
sheet with xR,xL as in (7.5) and (7.6) gives isothermal coordinates if and only if
Ln = Ln = 0 for all n ∈ Z.

Proof. We have isothermal coordinates if and only if

〈xτ + xσ ,xτ + xσ 〉= 〈xτ − xσ ,xτ − xσ 〉= 0.

Using the identities

xτ − xσ =
2√
4πκ ∑n∈Z

αne−in(τ−σ) and

xτ + xσ =
2√
4πκ ∑n∈Z

αne−in(τ+σ),

we get

〈xτ − xσ ,xτ − xσ 〉= 0

⇐⇒ 0 =

〈

∑
n∈Z

αne−in(τ−σ),∑
n∈Z

αne−in(τ−σ)

〉

⇐⇒ 0 = ∑
n∈Z

∑
k∈Z

e−i(n+k)(τ−σ)〈αn,αk〉

⇐⇒ 0 = ∑
m∈Z

∑
n+k=m

e−im(τ−σ)〈αn,αk〉

⇐⇒ ∀m ∈ Z : ∑
n+k=m

〈αn,αk〉= 0

⇐⇒ ∀m ∈ Z : ∑
k∈Z

〈αm−k,αk〉= 0

⇐⇒ ∀m ∈ Z : Lm = 0.

The same argument holds for xτ + xσ and Lm. �

Altogether, we have the following:

Theorem 7.5. The solutions of the string equations of motion are the functions

x(τ,σ) = x0 +
2√
4πκ

α0τ+
i√

4πκ ∑n �=0

1
n

(
αne−in(τ−σ) +αne−in(τ+σ)

)
,

for which the conditions (7.6) and Ln = Ln = 0 hold.

For a connection of the energy–momentum tensor T of a conformal field theory
with the Virasoro generators Ln and Ln we refer to (9.3) and to Sect. 10.5 in the
context of conformal vertex operators.

The oscillator modes αμ
n and αν

m are observables of the classical system. Obvi-
ously, they are constants of motion. Hence, one should try to quantize the αμ

n ,αν
m.
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In order to quantize the classical field theory of the bosonic string one needs the
Poisson brackets of the classical system:

{αμ
m ,αν

n } = imημνδm+n = {αμ
m,αν

n}, (7.8)

{αμ
m ,αν

n} = 0, (7.9)
{

pμ0 ,xν0
}

= ημν , (7.10)
{

xμ0 ,xν0
}

=
{

xμ0 ,αν
m

}
=
{

xμ0 ,αν
m

}
= 0, (7.11)

for all μ ,ν ∈ {0, . . . ,D−1} and m,n∈Z (here and in the following we set 4πκ = 1).
Observe that for each single index ν the collection of the observables αν

n ,n ∈ Z,
define a Lie algebra with respect to the Poisson bracket which is isomorphic to the
Heisenberg algebra.

Lemma 7.6. For n,m ∈ Z one has

{Lm,Ln}= i(n−m)Lm+n, {Lm,Ln}= i(n−m)Lm+n,

and {Lm,Ln}= 0.

This follows from the general formula

{AB,C}= A{B,C}+{A,C}B

for the Poisson bracket.

7.2 Canonical Quantization

In general, quantization of a classical system shall provide quantum models reflect-
ing the basic properties of the original classical system. A common quantization
procedure is canonical quantization. In canonical quantization a complex Hilbert
space H has to be constructed in order to represent the quantum mechanical states
as one-dimensional subspaces of H and to represent the observables as self-adjoint
operators in H. (The notion of a self-adjoint operator is briefly recalled on p. 130.)
Thereby the relevant classical observables f ,g, . . . have to be replaced with opera-
tors f̂ , ĝ such that the Poisson bracket is preserved in the sense that it is replaced
with the commutator of operators in H

{·, ·} �−→−i[·, ·].

Hence, for the relevant f ,g, . . . the following relations should be satisfied on a
common domain of definitions of the operators

[ f̂ , ĝ] =−i{̂ f ,g}.
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In addition, some natural identities have to be satisfied. For example, in the sit-
uation of the classical phase space R

2n with its Poisson structure on the space of
observables f : R

2n → C induced by the natural symplectic structure on R
2n it is

natural to require the Dirac conditions:

1. 1̂ = idH,
2. [q̂μ , p̂ν ] = iδ μν , [q̂μ , q̂ν ] = [p̂μ , p̂ν ] = 0,

with respect to the standard canonical coordinates (qμ , pν) of R
2n.

In general, one cannot quantize all classical observables (due to a result of van
Hove) and one chooses a suitable subset A which can be assumed to be a Lie
algebra with respect to the Poisson bracket. The canonical quantization of this sub-
algebra A of the Poisson algebra of all observables means essentially to find a
representation of A in the Hilbert space H.

The Harmonic Oscillator. Let us present as an elementary example a canonical
quantization of the one-dimensional harmonic oscillator. The classical phase space
is R

2 with coordinates (q, p). The Poisson bracket of two classical observables f ,g,
that is smooth functions f ,g : R

2 → C, is

{ f ,g}=
∂ f
∂q

∂g
∂ p

− ∂ f
∂ p

∂g
∂q

.

The hamiltonian function (that is the energy) of the harmonic oscillator is
h(q, p) = 1

2 (q2 + p2). The set of observables one wants to quantize contains at
least the four functions 1, p,q,h. Because of {1, f}= 0,{q, p}= 1,{h, p}= q, and
{h,q}=−p the vector space A generated by 1,q, p,h is a Lie algebra with respect
to the Poisson bracket.

As the Hilbert space of states one typically takes the space of square integrable
functions H := L2(R) in the variable q. The quantization of 1 is prescribed by the
first Dirac condition. As the quantization of q one then chooses the position oper-
ator q̂ = Q defined by ϕ(q) �→ qϕ(q) with domain of definition DQ = {ϕ ∈ H :∫
R
|qϕ(q)|2dq < ∞}. Q is an unbounded self-adjoint operator. This holds also for

the momentum operator P which is the quantization of p: P = p̂. P is defined as
P(ϕ) = −i ∂ϕ(q)

∂q for ϕ in the space D of all smooth functions on R with compact
support and can be continued to DP such that the continuation is self-adjoint. Ob-
serve that D is dense in H. The second Dirac condition is satisfied on D, i.e

[Q,P]ϕ = iϕ,ϕ ∈ D.

Finally, the quantization ĥ of the hamiltonian function h is the hamiltonian oper-
ator H, given by

H(ϕ) =
1
2

(
∂ 2ϕ
∂q2 (q)+q2ϕ(q)

)

on D with domain DH such that H is self-adjoint. It is easy to verify [H,Q] =
−iP, [H,P] = iQ on D from which we deduce [â, b̂] = −i{̂a,b} for all a,b ∈ A
on D.
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Note that ρ(a) := iâ defines a representation of A in H.
A different realization of a canonical quantization of the harmonic oscillator

is the following. The Hilbert space is the space H = �2 of complex sequence
z = (zν)ν∈N which are square summable ‖z‖2 = ∑∞

ν=0 |zν |2 < ∞. Let (en)ν∈N be
the standard (Schauder) basis of �2, that is en = (δ k

n ). By

H(en) := (n+
1
2
)en,

A∗(en) :=
√

2n+2en+1,

A(e0) := 0,A(en+1) :=
√

2n+2en,

we define operators H,A,A∗ on the subspace D⊂H of finite sequences, that is finite
linear combinations of the ens. H is an essentially self-adjoint operator and A∗ is the
adjoint of A as the notation already suggests. (More precisely, A and A∗ are the
restrictions to D of operators which are adjoint to each other.)

With Q := 1
2 (A + A∗) and P := 1

2 (A−A∗) the operators idH,Q,P,H satisfy in D
the same commutation relations

[Q,P] = i idH, [H,Q] =−iP, [H,P] = iQ

as before, and therefore constitute another canonical quantization of A . The two
quantizations are equivalent.

Note that D can be identified with the space of complex-valued polynomials C[T ]
by en �→ T n. This opens the possibility to purely algebraic methods in quantum field
theory by restricting all operations to the vector space D = C[T ] as, e.g., in the
quantization of strings (see below), in the representation of the Virasoro algebra
(cf. Sect. 6.5), or in the theory of vertex operators (cf. Chap. 10).

For obvious reasons, A is called the annihilation operator and A∗ is called the
creation operator.

Returning to the question of quantizing a string one observes immediately that for
any fixed index μ the Poisson brackets of the (αμ

m) are those of an infinite sequence
of one-dimensional harmonic oscillators (up to a constant). The corresponding os-
cillator algebra A generated by (αμ

m) (with fixed μ) can therefore be interpreted as
the algebra of an infinite dimensional harmonic oscillator. For a fixed index μ > 0
(which we omit for the rest of this section) the relevant Poisson brackets of the
oscillator algebra A are, according to (7.8),

{αm,αn}= imδn+m,{1,αn}= 0.

After quantization the operators an := α̂n generate a Lie algebra which is the
complex vector space generated by an,n ∈ Z, and Z (sometimes denoted Z = 1)
with the Lie bracket given by

[am,an] = mδn+mZ, [Z,am] = 0.

We see that this Lie algebra is nothing else than the Heisenberg algebra H
(cf. (4.1)).
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We conclude that constructing a canonical quantization of the infinite dimen-
sional harmonic oscillator is the same as finding a representation ρ : H→ End D of
the Heisenberg algebra H in a suitable dense subspace D ⊂H of a Hilbert space H

with ρ(Z) = idH.

Fock Space Representation. As the appropriate Fock space (that is representation
space) we choose the complex vector space

S := C[T1,T2, . . .] (7.12)

of polynomials in an infinite number of variables. We have to find a representation
of the Heisenberg algebra in EndCS. Define

ρ(an) :=
∂
∂Tn

for n > 0,

ρ(a0) := μ idS where μ ∈ C,

ρ(a−n) := nTn for n > 0, and

ρ(Z) := idS.

Then the commutation relations obviously hold and the representation is irre-
ducible. Moreover, it is a unitary representation in the following sense:

Lemma 7.7. For each μ ∈ R there is a unique positive definite hermitian form on
S, so that H(1,1) = 1 (1 stands for the vacuum vector) and

H(ρ(an) f ,g) = H( f ,ρ(a−n)g)

for all f ,g ∈ S and n ∈ Z, n �= 0.

Proof. First of all one sees that distinct monomials f ,g ∈ S have to be orthogonal
for such a hermitian form H on S. (The monomials are the polynomials of the form
T k1

n1 T k2
n2 . . .T kr

nr
with n j,k j ∈ N for j = 1,2, . . . ,r.) Given two distinct monomials f ,g

there exist an index n ∈ N and exponents k �= l, k, l ≥ 0, such that f = T k
n f1,g =

T l
n g1 for suitable monomials f1,g1 which are independent of Tn. Without loss of

generality let k < l. Then

H((ρ(an))k+1 f ,T l−k−1
n g1) = H((

∂
∂Tn

)k+1T k
n f1,T

l−k−1
n g1)

= H(0,T l−k−1
n g1)

= 0

and

H((ρ(an))k+1 f ,T l−k−1
n g1) = H( f ,(ρ(a−n)k+1T l−k−1

n g1))
= H( f ,nk+1T l

n g1)
= H( f ,g)
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imply H( f ,g) = 0. Moreover,

H( f , f ) = H( f ,n−k(ρ(an))k f1)
= n−kH(ρ(an)kT k

n f1, f1)

=
k!
nk H( f1, f1).

Using H(1,1) = 1, it follows for monomials f = T k1
n1 T k2

n2 . . .T kr
nr

with n1 < n2

< .. . < nr

H( f , f ) =
k1!k2! . . .kr!
nk1 nk2 . . .nkr

. (7.13)

Since the monomials constitute a (Hamel) basis of S, H is uniquely determined
as a positive definite hermitian form by (7.13) and the orthogonality condition. Re-
versing the arguments, by using (7.13) and the orthogonality condition H( f ,g) = 0
for distinct monomials f ,g ∈ S as a definition for H, one obtains a hermitian form
H on S with the required properties. �

Note that ρ(an)∗ = ρ(a−n) by the last result and for each n > 0 the operator
ρ(an) is an annihilation operator while ρ(an)∗ is a creation operator.

7.3 Fock Space Representation of the Virasoro Algebra

In order to obtain a representation of the Virasoro algebra Vir on the basis of the
Fock space representation ρ : H → End(S) of the Heisenberg algebra described in
the last section it seems to be natural to use the definition of the Virasoro observables
Ln in classical string theory, cf. (7.7),

Ln =
1
2 ∑k∈Z

αkαn−k =
1
2 ∑k∈Z

αn−kαk,

which satisfy the Witt relations (up to the constant i, see Lemma 7.6).
In a first naive attempt one could try to define the operators Ln : S → S by

Ln = 1
2 ∑k∈Z akan−k resp. Ln = 1

2 ∑k∈Zρ(ak)ρ(an−k). But this procedure is not well-
defined on S, since

ρ(ak)ρ(an−k) �= ρ(an−k)ρ(ak),

in general.
However, the normal ordering

:ρ(ai)ρ(a j): :=

{
ρ(ai)ρ(a j) for i≤ j

ρ(a j)ρ(ai) for i > j

defines operators

ρ(Ln) : S→ S, ρ(Ln) :=
1
2 ∑k∈Z

:ρ(ak)ρ(an−k): .
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The ρ(Lm) are well-defined operators, since the application to an arbitrary poly-
nomial P ∈ S = C[T1,T2, . . .] yields only a finite number of nonzero terms. The
normal ordering constitutes a difference compared to the classical summation for
the case n = 0 only. This follows from

ρ(ai)ρ(a j) = ρ(a j)ρ(ai) for i+ j �= 0,

:ρ(ak)ρ(a−k): = ρ(a−k)ρ(ak) for k ∈ N.

Consequently, the operators ρ(Ln) can be represented as

ρ(L0) =
1
2
ρ(a0)

2 + ∑
k∈N1

ρ(a−k)ρ(ak),

ρ(L2m) =
1
2
(ρ(am))2 + ∑

k∈N1

ρ(am−k)ρ(am+k),

ρ(L2m+1) = ∑
k∈N0

ρ(am−k)ρ(am+k+1),

for m ∈ N0 (here Nk = {n ∈ Z : n≥ k}).
We encounter normal ordering as an important tool in a more general context in

Chap. 10 on vertex algebras.

Theorem 7.8. In the Fock space representation we have

[Ln,Lm] = (n−m)Ln+m +
n

12
(n2−1)δn+mid

(with Ln instead of ρ(Ln)). Hence, it is a representation of the Virasoro algebra.

Proof. First of all we show

[Ln,am] =−mam+n, (7.14)

where m,n ∈ Z, using the commutation relations for the ans. (Here and in the fol-
lowing we write Ln instead of ρ(Ln) and an instead of ρ(an).) Let n �= 0.

Lnam =
1
2 ∑k∈Z

an−kakam

=
1
2 ∑k∈Z

an−k(amak + kδk+m)

=
1
2 ∑k∈Z

((aman−k +(n− k)δn+m−k)ak + kδk+man−k)

= amLn +
1
2
(−man+m−man+m)

= amLn−man+m.
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The case n = 0 is similar. From [Ln,am] =−man+m one can deduce

[[Ln,Lm],ak] =−k(n−m)an+m+k. (7.15)

In fact,

LnLmak = Ln(akLm− kam+k)
= akLnLm− kan+kLm− kLnam+k.

Hence,

[Ln,Lm]ak = ak[Ln,Lm]+ k[Lm,an+k]− k[Ln,am+k]

= ak[Ln,Lm]− k(n+ k)am+n+k + k(m+ k)am+n+k

= ak[Ln,Lm]− k(n−m)an+m+k.

It is now easy to deduce from (7.14) and (7.15) that for every f ∈ S with

[Ln,Lm] f = (n−m)Ln+m f +
n
12

(n2−1)δn+m f

and every k ∈ Z we have

[Ln,Lm](ak f ) = (n−m)Ln+m(ak f )+
n

12
(n2−1)δn+m(ak f ).

As a consequence, the commutation relation we want to prove has only to be
checked on the vacuum vector Ω = 1 ∈ S. The interesting case is to calculate
[Ln,L−n]Ω. Let n > 0. Then LnΩ = 0. Hence [Ln,L−n]Ω = LnL−nΩ. In case of
n = 2m+1 we obtain

L−nΩ =
1
2 ∑k∈Z

a−n−kakΩ

=
1
2 ∑k∈Z

a−n+ka−kΩ

=
1
2

n

∑
k=0

a−n+ka−kΩ

= μnTn +
1
2

n−1

∑
k=1

k(n− k)TkTn−k

= μnTn +
m

∑
k=1

k(n− k)TkTn−k =: Pn.

Now, alan−lPn �= 0 holds for l ∈ {0,1, . . .n} only and we infer alan−lPn =
l(n− l),1≤ l ≤ n−1, and alan−lPn = μ2n for l = 0, l = n. It follows that



118 7 String Theory as a Conformal Field Theory

[Ln,L−n]Ω = μ2n+
m

∑
k=1

k(n− k)

= 2nL0Ω+n
m

∑
k=1

k−
m

∑
k=1

k2

= 2nL0Ω+n
m
2

(m+1)− 1
6

m(m+1)(2m+1)

= 2nL0Ω+
n
3

m(m+1)

= 2nL0Ω+
n

12
(n2−1).

The case n = 2m can be treated in the same manner. Similarly, one checks that
[Ln,Lm]Ω = (n−m)Ln+m for the relatively simple case n+m �= 0. �

Another proof can be found, for instance, in [KR87, p. 15ff]. Here, we wanted
to demonstrate the impact of the commutation relations of the Heisenberg algebra
respectively the oscillator algebra A .

Corollary 7.9. The representation of Theorem 7.8 yields a positive definite unitary
highest-weight representation of the Virasoro algebra with the highest weight c =
1,h = 1

2μ
2 (cf. Chap. 6).

Proof. For the highest-weight vector v0 := 1 let

V := span
C
{Lnv0 : n ∈ Z}.

Then the restrictions of ρ(Ln) to the subspace V ⊂ S of S define a highest-weight
representation of Vir with highest weight (1, 1

2μ
2) and Virasoro module V . �

Remark 7.10. In most cases one has S = V . But this does not hold for μ = 0, for
instance.

More unitary highest-weight representations can be found by taking tensor prod-
ucts: for f ⊗g ∈V ⊗V let

(ρ⊗ρ)(Ln)( f ⊗g) := (ρ(Ln) f )⊗g+ f ⊗ (ρ(Ln)g).

As a simple consequence one gets

Theorem 7.11. ρ ⊗ ρ : Vir → EndC(V ⊗V ) is a positive definite unitary highest-
weight representation for the highest weight c = 2,h = μ2. By iteration of this pro-
cedure one gets unitary highest-weight representations for every weight (c,h) with
c ∈ N1 and h ∈ R+.

For the physics of strings, these representations resp. quantizations are not suffi-
cient, since only some of the important observables are represented. It is our aim in
this section, however, to present a straightforward construction of a unitary Verma
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module with c > 1 and h ≥ 0 for the discussion in Chap. 6 based on quantization.
Indeed, the starting point was the attempt of quantizing string theory. But for the
construction of the Verma module only the Fock space representation of the Heisen-
berg algebra as the algebra of the infinite dimensional harmonic oscillator was used
by restricting to one single coordinate.

We now come back to strings in taking care of all coordinates xμ ,μ ∈ {0,1,
. . .d−1}.

7.4 Quantization of Strings

In (non-compactified bosonic) string theory, the Poisson algebra

A := C1⊕
D−1⊕

μ=0

(Cxμ0 ⊕Cpμ0 )⊕
D−1⊕

μ=0

⊕

m�=0

(Cαμ
m)

of the classical oscillator modes and of the coordinates xμ0 , pν0 has to be quantized.
(See (7.8) for their Poisson brackets.) Equivalently, one has to find a representation
of the string algebra

L := C1⊕
D−1⊕

μ=0

(Cx̂μ0 ⊕Cp̂μ0 )⊕
D−1⊕

μ=0

⊕

m�=0

(Caμm)

with the following Lie brackets

{aμm,aνn} = mημνδm+n,

{p̂μ0 , x̂ν0} = −iημν ,

{x̂μ0 , x̂ν0} = {x̂μ0 ,aνm}= 0,

according to (7.8).
The corresponding Fock space is

S := C[T μ
n : n ∈ N0,μ = 0, . . . ,D−1]

and the respective representation is given by

ρ(am) := ημν ∂
∂Tν

m
for m > 0,

Pμ := ρ(aμ0 ) := iημν ∂
∂T μ

0
(αμ

0 = pμ0 if 4πκ = 1),

ρ(aμ−m) := mT μ
m for m > 0,

Qμ := ρ(x̂μ0 ) := T μ
0 .
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The natural hermitian form on S with H(1,1) = 1 and

H(ρ(αμ
m) f ,g) = H( f ,ρ(αμ

−m)g)

is no longer positive semi-definite. For instance,

H(T 0
1 ,T 0

1 ) = H(α0
−11,α0

−11) = H(1,α0
1α

0
−11)

= H(1, [α0
1 ,α0

−1]1) = H(1,−1)

= −1.

Moreover, this representation does not respect the gauge conditions Ln = 0.
A solution of both problems is provided by the so-called “no-ghost theorem”
(cf. [GSW87]). It essentially states that taking into account the gauge conditions
Ln = 0, n > 0, the representation becomes unitary for the dimension D = 26. This
means that the restriction of the hermitian form to the space of “physical states”

P := { f ∈ S : Ln f = 0 for all n > 0,L0 f = f}

is positive semi-definite (D = 26). A proof of the no-ghost theorem using the Kac
determinant can be found in [Tho84].
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Chapter 8
Axioms of Relativistic Quantum Field Theory

Although quantum field theories have been developed and used for more than
70 years a generally accepted and rigorous description of the structure of quan-
tum field theories does not exist. In many instances quantum field theory is ap-
proached by quantizing classical field theories as for example elaborated in the
last chapter on strings. A more systematic specification uses axioms. We present
in Sect. 8.3 the system of axioms which has been formulated by Arthur Wightman
in the early 1950s. This chapter follows partly the thorough exposition of the subject
in [SW64*]. In addition, we have used [Simo74*], [BLT75*], [Haa93*], as well as
[OS73] and [OS75].

The presentation of axiomatic quantum field theory in this chapter serves several
purposes:

• It gives a general motivation for the axioms of two-dimensional conformal field
theory in the Euclidean setting which we introduce in the next chapter.

• It explains in particular the transition from Minkowski spacetime to Euclidean
spacetime (Wick rotation) and thereby the transition from relativistic quantum
field theory to Euclidean quantum field theory (cf. Sect. 8.5).

• It explains the equivalence of the two descriptions of a quantum field theory using
either the fields (as operator-valued distributions) or the correlation functions
(resp. correlation distributions) as the main objects of the respective system (cf.
Sect. 8.4).

• It motivates how the requirement of conformal invariance in addition to the
Poincaré invariance leads to the concept of a vertex algebra.

• It points out important work which is known already for about 50 years and still
leads to many basic open problems like one out of the seven millennium problems
(cf. the article of Jaffe and Witten [JW06*]).

• It gives the opportunity to describe the general framework of quantum field the-
ory and to introduce some concepts and results on distributions and functional
analysis (cf. Sect. 8.1).

The results from functional analysis and distributions needed in this chapter can be
found in most of the corresponding textbooks, e.g., in [Rud73*] or [RS80*].
First of all, we recall some aspects of distribution theory in order to present a precise
concept of a quantum field.

Schottenloher, M.: Axioms of Relativistic Quantum Field Theory. Lect. Notes Phys. 759, 121–152
(2008)
DOI 10.1007/978-3-540-68628-6 9 c© Springer-Verlag Berlin Heidelberg 2008
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8.1 Distributions

A quantum field theory consists of quantum states and quantum fields with various
properties. The quantum states are represented by the lines through 0 (resp. by the
rays) of a separable complex Hilbert space H, that is by points in the associated
projective space P = P(H) and the observables of the quantum theory are the self-
adjoint operators in H.

In a direct analogy to classical fields one is tempted to understand quantum fields
as maps on the configuration space R

1,3 or on more general spacetime manifolds
M with values in the set of self-adjoint operators in H. However, one needs more
general objects, the quantum fields have to be operator-valued distributions. We
therefore recall in this section the concept of a distribution with a couple of results
in order to introduce the concept of a quantum field or field operator in the next
section.

Distributions. Let S (Rn) be the Schwartz space of rapidly decreasing smooth
functions, that is the complex vector space of all functions f : R

n → C with con-
tinuous partial derivatives of any order for which

| f |p,k := sup
|α|≤p

sup
x∈Rn

|∂α f (x)|(1+ |x|2)k < ∞, (8.1)

for all p,k ∈ N. (∂α is the partial derivative for the multi-index α = (α1, . . . ,αn) ∈
N

n with respect to the usual cartesian coordinates x = (x1,x2, . . . ,xn) in R
n.)

The elements of S = S (Rn) are the test functions and the dual space contains
the (tempered) distributions.

Observe that (8.1) defines seminorms f �→ | f |p,k on S .

Definition 8.1. A tempered distribution T is a linear functional T : S → C which
is continuous with respect to all the seminorms | |p,k defined in (8.1), p,k ∈ N.

Consequently, a linear T : S →C is a tempered distribution if for each sequence
( f j) of test functions which converges to f ∈S in the sense that

lim
j→∞

| f j− f |p,k = 0 for all p,k ∈ N,

the corresponding sequence (T ( f j)) of complex numbers converges to T ( f ). Equiv-
alently, a linear T : S → C is continuous if it is bounded, that is there are p,k ∈ N

and C ∈ R such that
|T ( f )| ≤C| f |p,k

for all f ∈S .
The vector space of tempered distributions is denoted by S ′ = S ′(Rn). S ′ will

be endowed with the topology of uniform convergence on all the compact subsets
of S . Since we only consider tempered distributions in these notes we often call a
tempered distribution simply a distribution in the sequel.

Some distributions are represented by functions, for example for an arbitrary
measurable and bounded function g on R

n the functional
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Tg( f ) :=
∫

Rn
g(x) f (x)dx, f ∈S ,

defines a distribution. A well-known distribution which cannot be represented as a
distribution of the form Tg for a function g on R

n is the delta distribution

δy : S → C, f �→ f (y),

the evaluation at y ∈ R
n. Nevertheless, δy is called frequently the delta function at y

and one writes δy = δ (x− y) in order to use the formal integral

δy( f ) = f (y) =
∫

Rn
δ (x− y) f (x)dx.

Here, the right-hand side of the equation is defined by the left-hand side.
Distributions T have derivatives. For example

∂
∂q j T ( f ) :=−T (

∂
∂q j f ),

and ∂αT is defined by

∂αT ( f ) := (−1)|α|T (∂α f ), f ∈S .

By using partial integration one obtains ∂αTg = T∂αg if g is differentiable and
suitably bounded.

An important example in the case of n = 1 is TH( f ) :=
∫ ∞

0 f (x)dx, f ∈S , with

d
dt

T ( f ) =−
∫ ∞

0
f ′(x)dx = f (0) = δ0( f ).

We observe that the delta distribution δ0 has a representation as the derivative of a
function (the Heaviside function H(x) = χ[0,∞[) although δ0 is not a true function.
This fact has the following generalization:

Proposition 8.2. Every tempered distribution T ∈S ′ has a representation as a fi-
nite sum of derivatives of continuous functions of polynomial growth, that is there
exist gα : R

n → C such that

T = ∑
0≤|α|≤k

∂αTgα .

Partial Differential Equations. Since a distribution possesses partial derivatives
of arbitrary order it is possible to regard partial differential equations as equations
for distributions and not only for differentiable functions. Distributional solutions in
general lead to results for true functions. This idea works especially well in the case
of partial differential equations with constant coefficients.

For a polynomial P(X) = cαXα ∈ C[X1, . . . ,Xn] in n variables with complex co-
efficients cα ∈ C one obtains the partial differential operator
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P(−i∂ ) = cα(−i∂ )α =∑c(α1,...,αn)∂
α1
1 . . .∂αn

n ,

and the corresponding inhomogeneous partial differential equation

P(−i∂ )u = v,

which is meaningful for functions as well as for distributions. As an example, the
basic partial differential operator determined by the geometry of the Euclidean space
R

n = R
n,0 is the Laplace operator

Δ= ∂ 2
1 + . . .+∂ 2

n ,

with Δ= P(−i∂ ) for P =−(X2
1 + . . .+X2

n ).
In the same way, the basic partial differential operator determined by the geom-

etry of the Minkowski space R
1,D−1 is the wave operator (the Laplace–Beltrami

operator with respect to the Minkowski-metric, cf. 1.6)

� = ∂0
2− (∂ 2

1 + . . .+∂ 2
D−1) = ∂ 2

0 −Δ,

and � = P(−i∂ ) for P =−X2
0 +X2

1 + . . .+X2
D−1.

A fundamental solution of the partial differential equation P(−i∂ )u = v is any
distribution G satisfying

P(−i∂ )G = δ .

Proposition 8.3. Such a fundamental solution provides solutions of the inhomoge-
neous partial differential equation P(−i∂ )u = v by convolution of G with v:

P(−i∂ )(G∗ v) = v.

Proof. Here, the convolution of two rapidly decreasing smooth functions u,v ∈S ,
is defined by

u∗ v(x) :=
∫

Rn
u(y)v(x− y)dy =

∫

Rn
u(x− y)v(y)dy.

The identity ∂ j(u∗v) = (∂ ju)∗v = u∗∂ jv holds. The convolution is extended to the
case of a distribution T ∈S ′ by T ∗ v(u) := T (v∗u). This extension again satisfies

∂ j(T ∗ v) = (∂ jT )∗ v = T ∗∂ jv.

Furthermore, we see that

δ ∗ v(u) = δ (v∗u) =
∫

Rn
v(y)u(y)dy,

thus δ ∗v = v. Now, the defining identity P(−i∂ )G = δ for the fundamental solution
implies P(−i∂ )(G∗ v) = δ ∗ v = v. �

Fundamental solutions are not unique, the difference u of two fundamental solu-
tions is evidently a solution of the homogeneous equation P(−i∂ )u = 0.
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Fundamental solutions are not easy to obtain directly. They often can be derived
using Fourier transform.

Fourier Transform. The Fourier transform of a suitably bounded measurable func-
tion u : R

n → C is
û(p) :=

∫

Rn
u(x)eix·pdx

for p = (p1, . . . , pn) ∈ (Rn)′ ∼= R
n whenever this integral is well-defined. Here, x · p

stands for a nondegenerate bilinear form appropriate for the problem one wants to
consider. For example, it might be the Euclidean scalar product or the Minkowski
scalar product in R

n = R
1,D−1 with x · p = xμηνμ pν = x0 p0−x1 p1− . . .−xD−1 pD−1.

The Fourier transform is, in particular, well-defined for a rapidly decreasing
smooth function u ∈S (Rn) = S and, moreover, the transformed function F (u) =
û is again a rapidly decreasing smooth function F (u) ∈ S . The inverse Fourier
transform of a function v = v(p) is

F−1v(x) := (2π)−n
∫

Rn
v(p)e−ix·pd p.

Proposition 8.4. The Fourier transform is a linear continuous map

F : S →S

whose inverse is F−1. As a consequence, F has an adjoint

F ′ : S ′ →S ′,T �→ T ◦F .

On the basis of this result we can define the Fourier transform F (T ) of a tem-
pered distribution T as the adjoint

F (T )(v) := T (F (v)) = F ′(T )(v),v ∈S ,

and we obtain a map F : S ′ →S ′ which is linear, continuous, and invertible. Note
that for a function g ∈ S the Fourier transforms of the corresponding distribution
Tg and that of g are the same:

F (Tg)(v) = Tg(v̂) =
∫

Rn

∫

(Rn)′
g(x)v(p)eix·pd pdx = TF (g)(v).

Typical examples of Fourier transforms of distributions are

F (H)(ω) =
∫ ∞

0
eitωdt =

i
ω+ i0

,

F (δ0) =
∫

RD
δ0(x)eix·pdx = 1,

F−1(eip·y) = (2π)−D
∫

RD
eip·(y−x)d p = δ (x− y).
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The fundamental importance of the Fourier transform is that it relates partial
derivatives in the xk with multiplication by the appropriate coordinate functions pk

after Fourier transformation:

F (∂ku) =−ipkF (u)

by partial integration

F (∂ku)(p) =
∫
∂ku(x)eix·pdx =−

∫
u(x)ipkeix·pdx =−ipkF (u)(p),

and consequently,
F (∂αu) = (−ip)αF (u).

This has direct applications to partial differential equations of the type

P(−i∂ )u = v.

The general differential equation P(−i∂ )u = v will be transformed by F into the
equation

P(p)û = v̂.

Now, trying to solve the original partial differential equation leads to a division
problem for distributions. Of course, the multiplication of a polynomial P = P(p)
and a distribution T ∈ S ′ given by PT (u) := T (Pu) is well-defined because
Pu(p) = P(p)u(p) is a function Pu ∈S for each u ∈S . Solving the division prob-
lem, that is determining a distribution T with PT = f for a given polynomial P and
function f , is in general a difficult task.

For a polynomial P let us denote G = GP the inverse Fourier transform F−1(T )
of a solution of the division problem PT = 1, that is PĜ = 1. Then G is a fundamen-
tal solution of P(−i∂ )u = v, that is

P(−i∂ )G = δ

since F (P(−i∂ )G) = P(p)Ĝ = 1 and F−1(1) = δ .

Klein–Gordon Equation. We study as an explicit example the fundamental solu-
tion of the Klein–Gordon equation. The results will be used later in the description
of the free boson within the framework of Wightman’s axioms, cf. p. 135, in order
to construct a model satisfying all the axioms of quantum field theory.

The dynamics of a free bosonic classical particle is governed by the Klein–
Gordon equation. The Klein–Gordon equation with mass m > 0 is

(�+m2)u = v,

where � is the wave operator for the Minkowski space R
1,D−1 as before. A funda-

mental solution can be determined by solving the division problem
(
−p2 +m2)T = 1:
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A suitable
T is
(
m2− p2)−1

as a distribution given by

T (v) =
∫

RD−1

(
PV
∫

R

v(p)
ω(p)− p2

0

d p0

)
dp,

where PV
∫

is the principal value of the integral. The corresponding fundamental
solution (the propagator) is

G(x) = (2π)−D
∫

RD
(m2− p2)−1e−ix·pd p.

G can be expressed more concretely by Bessel, Hankel, etc., functions.
We restrict our considerations to the free fields which are the solutions of the

homogeneous equation
(�−m2)φ = 0.

The Fourier transform φ̂ satisfies

(p2−m2)φ̂ = 0,

where p2 = 〈p, p〉= p2
0−(p2

1 + . . .+ p2
D−1). Therefore, φ̂ has its support in the mass-

shell {p ∈ (R1,D−1)′ : p2 = m2}. Consequently, φ̂ is proportional to δ (p2−m2) as
a distribution, that is φ̂ = g(p)δ (p2 −m2), and we get φ by the inverse Fourier
transform

φ(x) = (2π)−D
∫

RD
g(p)δ (p2−m2)e−ip·xd p.

Definition 8.5. The distribution

Dm(x) := 2πiF−1((sgn(p0)δ (p2−m2))(x)

is called the Pauli–Jordan function.

(sgn(t) is the sign of t, sgn(t) = H(t)−H(−t).) Dm generates all solutions of the
homogeneous Klein–Gordon equation. In order to describe Dm in detail and to use
the integration

Dm(x) = 2πi(2π)−D
∫

RD
sgn(p0)δ (p2−m2)e−ip·xd p

for further calculations we observe that for a general g the distribution

φ̂ = g(p)δ (p2−m2)

can also be written as

φ̂ = H(p0)g+(p)δ (p2−m2)−H(−p0)g−(p)δ (p2−m2)
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taking into account the two components of the hyperboloid {p ∈ (R1,D−1)′ : p2 =
m2}: the upper hyperboloid

Γm := {p ∈ (R1,D−1)′ : p2 = m2, p0 > 0}

and the lower hyperboloid

−Γm = {p ∈ ((R1,D−1))′ : p2 = m2, p0 < 0}.

Here, the g+, g− are distributions on the upper resp. lower hyperboloid, which in
our situation can be assumed to be functions which simply depend on p ∈R

D−1 via
the global charts

ξ± : R
D−1 →±Γm,p �→ (±ω(p),p),

where ω(p) :=
√

p2 +m2 and p = (p1, . . . , pD−1), hence p2 = p2
1 + . . .+ p2

D−1.
Let λm be the invariant measure on Γm given by the integral

∫

Γm

h(ξ )dλm(ξ ) :=
∫

RD−1
h(ξ+(p))(2ω(p))−1dp

for functions h defined on Γm and analogously on −Γm. Then for v ∈ S (RD) the
value of δ (p2−m2) is

δ (p2−m2)(v) =
∫

Γm

v(ω(p),p)dλm +
∫

−Γm

v(−ω(p),p)dλm.

Here, we use the identity δ (t2−b2) = (2b)−1(δ (t−b)+δ (t +b)) in one variable
t with respect to a constant b > 0.

These considerations lead to the following ansatz which is in close connection to
the formulas in the physics literature. We separate the coordinates x ∈ R

1,D−1 into
x = (t,x) with t = x0 and x = (x1, . . . ,xD−1). Let

φ(t,x) := (2π)−D
∫

RD−1
(a(p)ei(p·x−ω(p)t) +a∗(p)e−i(p·x−ω(p)t))dλm(p)

for arbitrary functions a,a∗ ∈ S (RD−1) in D− 1 variables. Then φ(t,x) satis-
fies (� + m2)φ = 0 which is clear from the above derivation (because of a(p) =
g+(ω(p),p),a∗(p) = g−(−ω(p),p) up to a constant). That φ(t,x) satisfies (� +
m2)φ = 0 is in fact very easy to show directly: With the abbreviation

k(t,x,p) := (2π)−D(a(p)ei(p·x−ω(p)t) +a∗(p)e−i(p·x−ω(p)t))

we have

∂ 2
0 φ(t,p) =

∫

γm

i2ω(p)2k(t,x,p)dλm and

∂ 2
j φ(t,p) =

∫

γm

i2 p2
j k(t,x,p)dλm for j > 0.
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Hence,

�φ(t,p) =−
∫

γm

(ω(p)2−p2)k(t,x,p)dλm =−m2φ(t,x).

We have shown the following result:

Proposition 8.6. Each solution φ ∈ S of (� + m2)φ = 0 can be represented
uniquely as

φ(t,x) := (2π)D
∫

RD−1
(a(p)ei(p·x−ω(p)t) +a∗(p)e−i(p·x−ω(p)t))dλm(p)

with a,a∗ ∈S ((RD−1)′). The real solutions correspond to the case a∗ = a.

8.2 Field Operators

Operators and Self-Adjoint Operators. Let S O = S O(H) denote the set of self-
adjoint operators in H and O = O(H) the set of all densely defined operators in H.
(A general reference for operator theory is [RS80*].) Here, an operator in H is a pair
(A,D) consisting of a subspace D = DA ⊂H and a C-linear mapping A : D→H, and
A is densely defined whenever DA is dense in H. In the following we are interested
only in densely defined operators. Recall that such an operator can be unbounded,
that is sup{‖A f‖ : f ∈ D,‖ f‖ ≤ 1} = ∞, and many relevant operators in quantum
theory are in fact unbounded. As an example, the position and momentum operators
mentioned in Sect. 7.2 in the context of quantization of the harmonic oscillator are
unbounded.

If a densely defined operator A is bounded (that is sup{‖A f‖ : f ∈DA,‖ f‖≤ 1}<
∞), then A is continuous and possesses a unique linear and continuous continuation
to all of H.

Let us also recall the notion of a self-adjoint operator. Every densely defined
operator A in H has an adjoint operator A∗ which is given by

DA∗ := { f ∈H|∃h ∈H ∀g ∈ DA : 〈h,g〉= 〈 f ,Ag〉},
〈A∗ f ,g〉= 〈 f ,Ag〉, f ∈ DA∗ ,g ∈ DA.

A∗ f for f ∈ DA∗ is thus the uniquely determined h = A∗ f ∈H with 〈h,g〉= 〈 f ,Ag〉
for all g ∈ DA.

It is easy to show that the adjoint A∗ of a densely defined operator A is a closed
operator. A closed operator B in H is defined by the property that the graph of B,
that is the subspace

Γ(B) = {( f ,B( f )) : f ∈ DB} ⊂H×H

of H×H, is closed, where the Hilbert space structure on H×H∼= H⊕H is defined
by the inner product
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〈( f , f ′),(g,g′)〉 := 〈 f ,g〉+ 〈 f ′,g′〉.

Hence, an operator B is closed if for all sequences ( fn) in DB such that fn → f ∈
H and B fn → g ∈H it follows that f ∈DB and B f = g. Of course, every continuous
operator defined on all of H is closed. Conversely, every closed operator B defined
on all of H is continuous by the closed graph theorem. Note that a closed densely
defined operator which is continuous satisfies DB = H.

Self-adjoint operators are sometimes mixed up with symmetric operators. For
operators with domain of definition DB = H the two notions agree and this holds
more generally for closed operators also. A symmetric operator is a densely defined
operator A such that

〈A f ,g〉= 〈 f ,Ag〉, f ,g ∈ DA.

By definition, a self-adjoint operator A is an operator which agrees with its ad-
joint A∗ in the sense of DA = DA∗ and A∗ f = A f for all f ∈DA. Clearly, a self-adjoint
operator is symmetric and it is closed since adjoint operators are closed in general.
Conversely, it can be shown that a symmetric operator is self-adjoint if it is closed.
An operator B is called essentially self-adjoint when it has a unique continuation to
a self-adjoint operator, that is there is a self-adjoint operator A with DB ⊂ DA and
B = A|DB .

For a closed operator A, the spectrum σ(A)= {λ ∈C : (A−λ idH)−1does not exist
as a bounded operator} is a closed subset of C. Whenever A is self-adjoint, the spec-
trum σ(A) is completely contained in R.

For a self-adjoint operator A there exists a unique representation U : R→ U(H)
satisfying

lim
t→0

U(t) f − f
t

=−iA f

for each f ∈ DA according to the spectral theorem. U is denoted U(t) = e−itA and
A (or sometimes −iA) is called the infinitesimal generator of U(t). Conversely (cf.
[RS80*]),

Theorem 8.7 (Theorem of Stone). Let U(t) be a one parameter group of unitary
operators in the complex Hilbert space H, that is U is a unitary representation of
R. Then the operator A, defined by

A f := lim
t→0

i
U(t) f − f

t

in the domain in which this limit exists with respect to the norm of H, is self-adjoint
and generates U(t) : U(t) = e−itA, t ∈ R.

With the aid of (tempered) distributions and (self-adjoint) operators we are now
in the position to explain what quantum fields are.

Field Operators. The central objects of quantum field theory are the quantum fields
or field operators. A field operator is the analogue of a classical field but now in
the quantum model. Therefore, in a first attempt, one might try to consider a field
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operator Φ to be a map from M to S O assigning to a point x ∈M = R
1,D−1 a self-

adjoint operator Φ(x) in a suitable way. However, for various reasons such a map is
not sufficient to describe quantum fields (see also Proposition 8.15). For example,
in some classical field theories the Poisson bracket of a field φ at points x,y ∈ M
with x0 = y0 (at equal time) is of the form

{φ(x),φ(y)}= δ (x− y),

where x := (x1, . . . ,xD−1), the space part of x = (x0,x1, . . . ,xD−1). This equation has
a rigorous interpretation in the context of the theory of distributions.

As a consequence, a quantum field will be an operator-valued distribution.

Definition 8.8. A field operator or quantum field is now by definition an operator-
valued distribution (on R

n), that is a map

Φ : S (Rn)→ O

such that there exists a dense subspace D⊂H satisfying

1. For each f ∈S the domain of definition DΦ( f ) contains D.
2. The induced map S → End(D), f �→Φ( f )|D, is linear.
3. For each v ∈ D and w ∈ H the assignment f �→ 〈w,Φ( f )(v)〉 is a tempered

distribution.

The concept of a quantum field as an operator-valued distribution corresponds
better to the actual physical situation than the more familiar notion of a field as a
quantity defined at each point of spacetime. Indeed, in experiments the field strength
is always measured not at a point x of spacetime but rather in some region of space
and in a finite time interval. Therefore, such a measurement is naturally described
by the expectation value of the field as a distribution applied to a test function with
support in the given spacetime region. See also Proposition 8.15 below.

As a generalization of the Definition 8.8, it is necessary to consider operator-
valued tensor distributions also. Here, the term tensor is used for a quantity which
transforms according to a finite-dimensional representation of the Lorentz group L
(resp. of its universal cover).

8.3 Wightman Axioms

In order to present the axiomatic quantum field theory according to Wightman we
need the notion of a quantum field or field operator Φ as an operator-valued dis-
tribution which we have introduced in Definition 8.8 and some informations about
properties on geometric invariance which we recall in the sequel.

Relativistic Invariance. As before, let M = R
1,D−1 D-dimensional Minkowski

space (in particular the usual four-dimensional Minkowski space M = R
1,3 or the

Minkowski plane M = R
1,1) with the (Lorentz) metric
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x2 = 〈x,x〉= x0x0−
D−1

∑
j=1

x jx j,x = (x0, . . . ,xD−1) ∈M.

Two subsets X ,Y ⊂M are called to be space-like separated if for any x ∈ X and
any y ∈ Y the condition (x− y)2 < 0 is satisfied, that is

(x0− y0)2 <
D−1

∑
j=1

(x j− y j)2.

The forward cone is C+ := {x ∈ M : x2 =< x,x >≥ 0,x1 ≥ 0} and the causal
order is given by x≥ y⇐⇒ x− y ∈C+.

Relativistic invariance of classical point particles in M = R
1,D−1 or of classical

field theory on M is described by the Poincaré group P := P(1,D−1), the identity
component of the group of all transformations of M preserving the metric. P is
generated by the Lorentz group L, the identity component L := SO0(1,D− 1) ⊂
GL(D,R) of the orthogonal group O(1,D− 1) of all linear transformations of M
preserving the metric. (L is sometimes written SO(1,D− 1) by abuse of notation.)
In fact, the Poincaré group P is the semidirect product (see Sect. 3.1) L�R

n ∼= P of
L and the translation group M = R

D.
The Poincaré group P preserves the causal structure and the space-like separate-

ness. Observe that the corresponding conformal group SO(2,D) (cf. Theorem 2.9)
which contains the Poincaré transformations also preserves the causal structure, but
not the space-like separateness.

The Poincaré group acts on S = S (RD), the space of test functions, from the
left by h · f (x) := f (h−1x) with g ·(h · f ) = (gh) · f and this left action is continuous.
It is mostly written in the form

(q,Λ) f (x) = f (Λ−1(x−q)),

where the Poincaré transformations h are parameterized by (q,Λ) ∈ L � M,q ∈ M,
Λ ∈ L.

The relativistic invariance of the quantum system with respect to Minkowski
space M = R

1,D−1 is in general given by a projective representation P → U(P(H))
of the Poincaré group P, a representation in the space P(H) of states of the quantum
system as we explain in Sect. 3.2. By Bargmann’s Theorem 4.8 such a represen-
tation can be lifted to an essentially uniquely determined unitary representation of
the 2-to-1 covering group of P, the simply connected universal cover of P. This
group is isomorphic to the semidirect product Spin(1,D−1)�R

D for D > 2 where
Spin(1,D−1) is the corresponding spin group, the universal covering group of the
Lorentz group L= SO(1,D− 1). In the sequel we often call these covering groups
the Poincaré group and Lorentz group, respectively, and denote them simply again
by P and L.
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Note that in the two-dimensional case, the Lorentz group L is isomorphic to the
abelian group R of real numbers (cf. Remark 1.15) and therefore agrees with its
universal covering group.

We thus suppose to have a unitary representation of the Poincaré group P which
will be denoted by

U : P→ U(H),(q,Λ) �→U(q,Λ),

(q,Λ) ∈M×L = L � M.
Since the transformation group M ⊂ P is abelian one can apply Stone’s Theo-

rem 8.7 in order to obtain the restriction of the unitary representation U to M in
the form

U(q,1) = exp iqP = exp i(q0P0−q1P1− . . .−qD−1PD−1), (8.2)

q ∈ R
1,D−1, with self-adjoint commuting operators P0, . . . ,PD−1 on H. P0 is inter-

preted as the energy operator P0 = H and the Pj, j > 0, as the components of the
momentum.

We are now in the position to formulate the axioms of quantum field theory.

Wightman Axioms. A Wightman quantum field theory (Wightman QFT) in dimen-
sion D consists of the following data:

– the space of states, which is the projective space P(H) of a separable complex
Hilbert space H,

– the vacuum vector Ω ∈H of norm 1,
– a unitary representation U : P → U(H) of P, the covering group of the Poincaré

group,
– a collection of field operators Φa,a ∈ I (cf. Definition 8.8),

Φa : S (RD)→ O,

with a dense subspace D⊂H as their common domain (that is the domain Da( f )
of Φa contains D for all a ∈ A, f ∈S ) such that Ω is in the domain D.

These data satisfy the following three axioms:

Axiom W1 (Covariance)

1. Ω is P-invariant, that is U(q,Λ)Ω = Ω for all (q,Λ) ∈ P, and D is P-invariant,
that is U(q,Λ)D⊂ D for all (q,Λ) ∈ P,

2. the common domain D ⊂ H is invariant in the sense that Φa( f )D ⊂ D for all
f ∈S and a ∈ I,

3. the actions on H and S are equivariant where P acts on End(D) by conjugation.
That is on D we have

U(q,Λ)Φa( f )U(q,Λ)∗ =Φ((q,Λ) f ) (8.3)

for all f ∈S and for all (q,Λ) ∈ P.
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Axiom W2 (Locality) Φa( f ) and Φb(g) commute on D if the supports of f ,g ∈S
are space-like separated, that is on D

Φa( f )Φb(g)−Φb(g)Φa( f ) = [Φa( f ),Φb(g)] = 0. (8.4)

Axiom W3 (Spectrum Condition) The joint spectrum of the operators Pj is con-
tained in the forward cone C+.

Recall that the support of a function f is the closure of the points x with f (x) �= 0.
If one represents the operator-valued distribution Φa symbolically by a function

Φa =Φa(x) ∈O the equivariance (8.3) can be written in the following form:

U(q,Λ)Φa(x)U(q,Λ)∗ =Φa(Λx+q).

This form is frequently used even if Φa cannot be represented as a function, and the
equality is only valid in a purely formal way.

Remark 8.9. The relevant fields, that is the operators Φa( f ) for real-valued test
functions f ∈ S , should be essentially self-adjoint. In the above axioms this has
not been required from the beginning because often one considers a larger set of
field operators so that only certain combinations are self-adjoint. In that situation it
is reasonable to require Φ∗a to be in the set of quantum fields, that is Φ∗a =Φa′ for a
suitable a′ ∈ A (where a = a′ if Φa( f ) is essentially self-adjoint).

Remark 8.10. Axiom W1 is formulated for scalar fields only which transform un-
der the trivial representation of L. In general, if fields have to be considered which
transform according to a nontrivial (finite-dimensional) complex or real representa-
tion R : L → GL(W ) of the (double cover of the) Lorentz group (like spinor fields,
for example) the equivariance in (8.3) has to be replaced by

U(q,Λ)Φ j( f )U(q,Λ)∗ =
m

∑
k=1

R jk(Λ−1)Φk((q,Λ) f ). (8.5)

Here, W is identified with R
m resp. C

m, and the R(Λ) are given by matrices(
R jk(Λ)
)
. Moreover, the fields Φa are merely components and have to be grouped

together to vectors (Φ1, . . . ,Φm).

Remark 8.11. In the case of D = 2 there exist nontrivial one-dimensional represen-
tations R : L→ GL(1,C) = C

× of the Lorentz group L, since the Lie algebra Lie L
of L is R and therefore not semi-simple. In this situation the equivariance (8.3) has
to be extended to

U(q,Λ)Φa( f )U(q,Λ)∗ = R(Λ−1)Φa((q,Λ) f ). (8.6)

Remark 8.12. Another generalization of the axioms of a completely different na-
ture concerns the locality. In the above axioms only bosonic fields are considered.
For the fermionic case one has to impose a grading into even and odd (see also Re-
mark 10.19), and the commutator of odd fields in Axiom W2 has to be replaced with
the anticommutator.
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Remark 8.13. The spectrum condition (Axiom W3) implies that for eigenvalues pμ
of Pμ the vector p = (p0, . . . , pD−1) satisfies p ∈C+. In particular, with the interpre-
tation of P0 = H as the energy operator the system has no negative energy states:
p0 ≥ 0. Moreover, P2 = P2

0 −P2
1 − . . .−P2

D−1 has the interpretation of the mass-
squared operator with the condition p2 ≥ 0 for each D−tuple of eigenvalues pμ of
Pμ in case Axiom W3 is satisfied.

Remark 8.14. In addition to the above axioms in many cases an irreducibility or
completeness condition is required. For example, it is customary to require that the
vacuum is cyclic in the sense that the subspace D0 ⊂ D spanned by all the vectors

Φa1( f1)Φa2( f2) . . .Φam( fm)Ω1

is dense in D and thus dense in H.

Moreover, as an additional axiom one can require the vacuum Ω to be unique:

Axiom W4 (Uniqueness of the Vacuum) The only vectors in H left invariant by
the translations U(q,1), q ∈M, are the scalar multiples of the vacuum Ω.

Although the above postulates appear to be quite evident and natural, it is by no
means easy to give examples of Wightman quantum field theories even for the case
of free theories. For the case of proper interaction no Wightman QFT is known so
far in the relevant case of D = 4, and it is one of the millennium problems discussed
in [JW06*] to construct such a theory. For D = 2, however, there are theories with
interaction (cf. [Simo74*]), and many of the conformal field theories in two dimen-
sions have nontrivial interaction.

Example: Free Bosonic QFT. In the following we sketch a Wightman QFT for
a quantized boson of mass m > 0 in three-dimensional space (hence D = 4, the
considerations work for arbitrary D ≥ 2 without alterations). The basic differential
operator, the Klein–Gordon operator �+m2 with mass m, has already been studied
in Sect. 8.1. We look for a field operator

Φ : S = S (R4)−→S O(H)

on a Hilbert space H such that for all test function f ,g ∈ S :

1. Φ satisfies the Klein–Gordon equation in the following sense:

Φ(� f +m2 f ) = 0 for all f ∈S .

2. Φ obeys the commutation relation

[Φ( f ),Φ(g)] =−i
∫

R4×R4
f (x)Dm(x− y)g(y)dxdy.

1 As before, we write the composition B ◦C of operators as multiplication BC and similarly the
value B(v) as multiplication Bv.
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Here, Dm is the Pauli–Jordan function (cf. Definition 8.5)

Dm(x) := i(2π)−3
∫

RD
sgn(p0)δ (p2−m2)e−ip·xd p.

The construction of such a field and the corresponding Hilbert space is a Fock
space construction. Let H1 = S (Γm)∼= S (R3). The isomorphism is induced by the
global chart

ξ : R
3 → Γm,p �→ (ω(p),p),

where ω(p) =
√

p2 +m2. We denote the points in Γm by ξ or ξ j in the following:
H1 is dense in H1 := L2(Γm,dλm), the complex Hilbert space of square-integrable

functions on the upper hyperboloid Γm. Furthermore, let HN denote the space of
rapidly decreasing functions on the N-fold product of the upper hyperboloid Γm

which are symmetric in the variables (p1, . . . ,pN) ∈ ΓN
m. HN has the inner product

〈u,v〉 :=
∫

ΓN
m

u(ξ1, . . . ,ξN)v(ξ1, . . . ,ξN)dλm(ξ1) . . .dλm(ξN).

The Hilbert space completion of HN will be denoted by HN . HN contains the
N-fold symmetric product of H1 and this space is dense in HN and thus also in HN .
Now, the direct sum

D :=
∞⊕

N=0

HN

(H0 = C with the vacuum Ω := 1 ∈ H0) has a natural inner product given by

〈 f ,g〉 := f0g0 + ∑
N≥1

1
N!
〈 fN ,gN〉,

where f = ( f0, f1, . . .),g = (g0,g1, . . .)∈D. The completion of D with respect to this
inner product is the Fock space H. H can also be viewed as a suitable completion of
the symmetric algebra

S(H1) =
⊕

H�N
1 ,

where H�N
1 is the N-fold symmetric product

H�N
1 = H1� . . .�H1.

The operators Φ( f ), f ∈S , will be defined on g = (g0,g1, . . .) ∈ D by

(Φ( f )g)N(ξ1, . . . ,ξN) :=
∫

Γm

f̂ (ξ )gN+1(ξ ,ξ1, . . . ,ξN)dλm(ξ )

+
N

∑
j=1

f̂ (−ξ j)gN−1(ξ1, . . . ξ̂ j . . . ,ξN),
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where ξ̂ j means that this variable has to be omitted. This completes the construction
of the Wightman QFT for the free boson.

The various requirements and axioms are not too difficult to verify. For example,
we obtain Φ(� f −m2 f ) = 0 since

F (� f −m2 f ) = (−p2 +m2) f̂

vanishes on Γm, and similarly we obtain the second requirement on the commutators
the formula

[Φ( f ),Φ(g)] =−i
∫

R4×R4
f (x)Dm(x− y)g(y)dxdy.

Furthermore, we observe that the natural action of the Poincaré group on R
1,3

and on S (R1,3) induces a unitary representation U in the Fock space H leaving
invariant the vacuum and the domain of definition D. Of course, Φ is a field operator
in the sense of our Definition 8.8 with Φ( f )D⊂D and, moreover, it can be checked
that Φ is covariant in the sense of Axiom W1 and that the joint spectrum of the
operators Pj is supported in Γm hence in the forward light cone (Axiom W3). Finally,
the construction yields locality (Axiom W2) according to the above formula for
[Φ( f ),Φ(g)].

We conclude this section with the following result of Wightman which demon-
strates that in QFT it is necessary to consider operator-valued distributions instead
of operator-valued mappings:

Proposition 8.15. Let Φ be a field in a Wightman QFT which can be realized as a
map Φ : M →O and where Φ∗ belongs to the fields. Moreover, assume that Ω is the
only translation-invariant vector (up to scalars). Then Φ(x) = cΩ is the constant
operator for a suitable constant c ∈ C.

In fact, it is enough to require equivariance with respect to the transformation
group only and the property that Φ(x) and Φ(y)∗ commute if x− y is spacelike.

8.4 Wightman Distributions and Reconstruction

Let Φ = Φa be a field operator in a Wightman QFT acting on the space S =
S (R1,D−1) of test functions

Φ : S −→ O(H).

We assume Φ( f ) to be self-adjoint for real-valued f ∈ S (cf. 8.9), hence
Φ( f )∗ =Φ( f ) in general. Then for f1, . . . , fN ∈S one can define

WN( f1, . . . , fN) := 〈Ω,Φ( f1) . . .Φ( fN)Ω〉

according to Axiom W1 part 2. Since Φ is a field operator the mapping
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WN : S ×S . . .×S −→ C

is multilinear and separately continuous. It is therefore jointly continuous and one
can apply the nuclear theorem of Schwartz to obtain a uniquely defined distribution
on the space in DN variables, that is a distribution in S ′((RD)N) = S ′(RDN). This
continuation of WN will be denoted again by WN .

The sequence (WN) of distributions generated by Φ is called the sequence of
Wightman distributions. The WN ∈ S ′(RDN) are also called vacuum expectation
values or correlation functions.

Theorem 8.16. The Wightman distributions associated to a Wightman QFT satisfy
the following conditions: Each WN ,N ∈ N, is a tempered distribution

WN ∈S ′(RDN)

with

WD1 (Covariance) WN is Poincaré invariant in the following sense:

WN( f ) = WN((q,Λ) f ) f or all (q,Λ)) ∈ P.

WD2 (Locality) For all N ∈ N and j,1≤ j < N,

WN(x1, . . . ,x j,x j+1, . . . ,xN) = WN(x1, . . . ,x j+1,x j, . . . ,xN),

if (x j - x j+1)2 < 0.)

WD3 (Spectrum Condition) For each N > 0 there exists a distribution
MN ∈S ′(RD(N−1)) supported in the product (C+)N−1 ⊂R

D(N−1) of forward cones
such that

WN(x1, . . . ,xN) =
∫

RD(N−1)
MN(p)ei∑ p j ·(x j+1−x j)d p,

where p = (p1, . . . , pn−1) ∈ (RD)N−1 and d p = d p1 . . .d pN−1.

WD4 (Positive Definiteness) For any sequence fN ∈S (RDN)N ∈N one has for all
m ∈ N:

k

∑
M,N=0

WM+N( f M ⊗ fN)≥ 0.

f ⊗g for f ∈S (RDM),g ∈S (RDN) is defined by

f ⊗g(x1, . . . ,xM+N) = f (x1, . . . ,xM)g(xM+1, . . . ,xM+N).

Proof. WD1 follows directly from W1. Observe that the unitary representation of
the Poincaré group is no longer visible. And WD2 is a direct consequence of W2.
WD4 is essentially the property that a vector of the form
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k

∑
M=1

Φ( fM)Ω ∈H

has a non-negative norm where Φ( fM)Ω is defined as follows: The map

( f1, . . . , fM) �→Φ( f1) . . .Φ( fM)Ω,( f1, . . . , fM) ∈S (RD)M,

is continuous and multilinear by the general assumptions on the field operator Φ
and therefore induces by the nuclear theorem a vector-valued distribution ΦM :
S (RDM)→H which is symbolically written as ΦM(x1, . . . ,xM). Now, Φ( fM)Ω :=
ΦM( fM)Ω and

0 ≤
∥
∥
∥
∥
∥

k

∑
M=1

Φ( fM)Ω

∥
∥
∥
∥
∥

2

≤
〈

k

∑
M=1

Φ( fM)Ω,
k

∑
N=1

Φ( fN)Ω

〉

≤ ∑
M,N

〈Ω,Φ( fM)∗Φ( fN)Ω〉= ∑
M,N

WM+N( f M ⊗ fN).

WD3 will be proven in the next proposition. �

In the sequel we write the distributions Φ and WN symbolically as functions Φ(x)
and WN(x1, . . . ,xN) in order to simplify the notation and to work more easily with
the supports of the distributions in consideration.

The covariance of the field operator Φ implies the covariance

WN(x1, . . . ,xn) = WN(Λx1 +q, . . . ,ΛxN +q)

for every (q,Λ) ∈ P. In particular, the Wightman distributions are translation-
invariant:

WN(x1, . . . ,xn) = WN(x1 +q, . . . ,xN +q).

Consequently, WN depends only on the differences

ξ1 = x1− x2, . . . ,ξN−1 = xN−1− xN .

We define
wN(ξ1, . . . ,ξN−1) := WN(x1, . . . ,xN).

Proposition 8.17. The Fourier transform ŵN has its support in the product (C+)N−1

of the forward cone C+ ∈ R
D. Hence

WN(x) = (2π)−D(N−1)
∫

RD(N−1)
ŵN(p)e−i∑ p j ·(x j−x j+1)d p.

Proof. Because of U(x,1)∗ = U(−x,1) = e−ix·P for x ∈ R
D (cf. 8.2) the spectrum

condition W2 implies ∫

RD
eix·pU(x,1)∗vdx = 0
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for every v ∈H if p /∈C+. Since wN(ξ1, . . . ,ξ j +x,ξ j+1, . . . ,ξN−1) = WN(x1, . . . ,x j,
x j+1− x, . . . ,xN − x) the Fourier transform of wN with respect to ξ j gives

∫

RD
wN(ξ1, . . . ,ξ j + x,ξ j+1, . . . ,ξN−1)eip j ·xdx

=
〈
Ω,Φ(x1) . . .Φ(x j)

∫

RD
Φ(x j+1− x) . . .Φ(xN − x)eip j ·xΩdx

〉

=
〈
Ω,Φ(x1) . . .Φ(x j)

∫

RD
eix·p jU∗(x,1)Φ(x j+1) . . .Φ(xN)Ωdx

〉
= 0,

where the last identity is a result of applying the above formula to v = Φ(x j+1) . . .
Φ(xN)Ω whenever p j /∈C+. Hence,

ŵN(p1, . . . , pN−1) = 0

if p j /∈C+ for at least one index j. �
Having established the basic properties of the Wightman functions we now ex-

plain how a sequence of distributions with the properties WD 1–4 induce a Wight-
man QFT by the following:

Theorem 8.18. (Wightman Reconstruction Theorem) Given any sequence (WN),
WN ∈S ′(RDN), of tempered distributions obeying the conditions WD1–WD4, there
exists a Wightman QFT for which the WN are the Wightman distributions.

Proof. We first construct the Hilbert space for the Wightman QFT. Let

S :=
∞⊕

N=0

S (RDN)

denote the vector space of finite sequences f = ( fN) with fN ∈S (RDN) =: SN . On
S we define a multiplication

f ×g := (hN),hN :=
N

∑
k=0

fk(x1, . . . ,xk)gN−k(xk+1, . . . ,xN).

The multiplication is associative and distributive but not commutative. Therefore,
S is an associative algebra with unit 1 = (1,0,0, . . .) and with a convolution γ( f ) :=
( f N) = f . γ is complex antilinear and satisfies γ2 = id.

Our basic algebra S will be endowed with the direct limit topology and thus
becomes a complete locally convex space which is separable. (The direct limit
topology is the finest locally convex topology on S such that the natural inclu-
sions S (RDN)→S are continuous.) The continuous linear functionals μ : S →C

are represented by sequences (μN) of tempered distributions μN ∈S ′
N : μ(( fN)) =

∑μN( fN).
Such a functional is called positive semi-definite if μ( f × f ) ≥ 0 for all f ∈S

because the associated bilinear form ω = ωμ given by ω( f ,g) := μ( f ×g) is pos-
itive semi-definite. For a positive semi-definite continuous linear functional μ the
subspace
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J = { f ∈S : μ( f × f ) = 0}
turns out to be an ideal in the algebra S .

It is not difficult to show that in the case of a positive semi-definite μ ∈S ′ the
form ω is hermitian and defines on the quotient S /J a positive definite hermitian
scalar product. Therefore, S /J is a pre-Hilbert space and the completion of this
space with respect to the scalar product is the Hilbert space H needed for the recon-
struction. This construction is similar to the so-called GNS construction of Gelfand,
Naimark, and Segal.

The vacuum Ω ∈ H will be the class of the unit 1 ∈S and the field operator Φ
is defined by fixing Φ( f ) for any test function f ∈S on the subspace D = S /J of
classes [g] of elements of S by

Φ( f )([g]) := [g× f ],

where f stands for the sequence (0, f ,0, . . . ,). Evidently,Φ( f ) is an operator defined
on D depending linearly on f . Moreover, for h,g ∈S the assignment

f �→ 〈[h],Φ( f )([g])〉= μ(h× (g× f ))

is a tempered distribution because μ is continuous. This means that Φ is a field
operator in the sense of Definition 8.8. Obviously, Φ( f )D⊂ D and Ω ∈ D.

So far, the Wightman distributions WN have not been used at all. We consider now
the above construction for the continuous functional μ := (WN). Because of prop-
erty WD4 this functional is positive semi-definite and provides the Hilbert space H

constructed above depending on (WN) together with a vacuum Ω and a field oper-
ator Φ. The properties of the Wightman distributions which eventually ensure that
the Wightman axioms for this construction are fulfilled are encoded in the ideal

J = { f = ( fN) ∈S :∑WN( f × f ) = 0}.

To show covariance, we first have to specify a unitary representation of the
Poincaré group P in H. This representation is induced by the natural action f �→
(q,Λ) f of P on S given by

(q,Λ) fn(x1, . . . ,xn) := f (Λ−1(x1−q), . . . ,Λ−1(xn−q))

for (q,Λ) ∈ L � M ∼= P. This action leads to a homomorphism P → GL(S ) and the
action respects the multiplication. Now, because of the covariance of the Wightman
distributions (property WD1) the ideal J is invariant, that is for f ∈ J and (q,Λ) ∈ P
we have (q,Λ) f ∈ J. As a consequence, U(q,Λ)([ f ]) := [(q,Λ) f )] is well-defined
on D⊂H with

〈U(q,Λ)([ f ]),U(q,Λ)([ f ])〉= 〈[ f ], [ f ]〉.
Altogether, this defines a unitary representation of P in H leaving Ω invariant

such that the field operator is equivariant. We have shown that the covariance axiom
W1 is satisfied.
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In a similar way, one can show that property WD2 implies W2 and property WD3
implies W3. Locality (property WD2) implies that J includes the ideal Jlc generated
by the linear combinations of the form

fN(x1, . . . ,xN) = g(x1, . . . ,x j,x j+1, . . . ,xN)−g(x1, . . . ,x j+1,x j, . . . ,xN)

with g(x1, . . . ,xN) = 0 for (x j+1−x j)2 ≥ 0. And property WD3 (spectrum condition)
implies that the ideal

Jsp := {( fN) : f0 = 0, f̂ (p1, . . . , pN) = 0 in a neighborhood of CN},

where CN = {p : p1 + . . .+ p j ∈C+, j = 1, . . . ,N}, is also contained in J. �

As a result of this section, in an axiomatic approach to quantum field theory the
Wightman axioms W1–W3 on the field operators can be replaced by the equivalent
properties or axioms WD1–WD4 on the corresponding correlation functions WN ,
the Wightman distributions. This second approach is formulated without explicit
reference to the Hilbert space.

In the next section we come to a different but again equivalent description of
the axiomatics which is formulated completely in the framework of Euclidean
geometry.

8.5 Analytic Continuation and Wick Rotation

In this section we explain how the Wightman axioms induce a Euclidean field theory
through analytic continuation of the Wightman distributions.

We first collect some results and examples on analytic continuation of holomor-
phic functions. Recall that a complex-valued function F : U →C on an open subset
U ⊂ C

n is holomorphic or analytic if it has complex partial derivatives ∂
∂ z j F = ∂ jF

on U with respect to each of its variables z j or, equivalently, if F can be expanded
in each point a ∈U into a convergent power series ∑cαzα such that

F(a+ z) = ∑
α∈Nn

cαzα

for z in a suitable open neighborhood of 0. The partial derivatives of F in a of any
order exist and appear in the power series expansions in the form ∂αF(a) = α!cα .

A holomorphic function F on a connected domain U ⊂ C
n is completely deter-

mined by the restriction F |W to any nonempty open subset W ⊂U or by any of its
germs (that is power series expansion) at a point a ∈U . This property leads to the
phenomenon of analytic continuation, namely that a holomorphic function g on an
open subset W ⊂ C

n may have a so-called analytic continuation to a holomorphic
F : U → C, that is F |W = g, which is uniquely determined by g.
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A different type of analytic continuation occurs if a real analytic function g :
W → C on an open subset W ⊂ R

n is regarded as the restriction of a holomorphic
F : U → C where U is an open subset in C

n with U ∩R
n = W . Such a holomorphic

function F is obtained by simply exploiting the power series expansions of the real
analytic function g: For each a∈W there are cα ∈C and r j(a) > 0, j = 1, . . . ,n, such
that g(a+ x) = ∑α cαxα for all x with |x j|< r j(a). By inserting z ∈ C, |z j|< r j(a),
instead of x into the power series we get such an analytic continuation defined on
the open neighborhood U = {a+ z ∈ C

n : a ∈W, |z j|< r j(a)} ⊂ C
n of W .

Another kind of analytic continuation is given by the Laplace transform. As an
example in one dimension let u : R+ → C be a polynomially bounded continuous
function on R+ = {t ∈ R : t > 0}.

Then the integral (“Laplace transform”)

L (u)(z) = F(z) :=
∫ ∞

0
u(t)eitzdt, Im z ∈ R+,

defines a holomorphic function F on the “tube” domain U = R×R+ ⊂C such that,

lim
y↘0

F(x+ iy) = g(x) where g(x) :=
∫ ∞

0
u(t)eitxdt.

In this situation the g(x) are sometimes called the boundary values of F(z). The
analytic continuation is given by the Laplace transform.

Of course, the integral exists because of |u(t)eitz| = |u(t)e−ty| ≤ |u(x)| for z =
x + iy ∈U and t ∈ R+. F is holomorphic since we can interchange integration and
derivation to obtain

d
dz

F(z) = F ′(z) = i
∫ ∞

0
tu(t)eitzdt.

We now present a result which shows how in a similar way even a distribution
T ∈S (Rn)′ can, in principle, be continued analytically from R

n into an open neigh-
borhood U ⊂ C

n of R
n and in which sense T is a boundary value of this analytic

continuation.
Let C ⊂ R

n be a convex cone with its dual C′ := {p ∈ R
n : p · x≥ 0∀ x ∈C} and

assume that C′ has a nonempty interior C◦. Let T := R
n × (−C◦) be the induced

open tube in C
n. Here, the dot “·” represents any scalar product on R

n, that is any
symmetric and nondegenerate bilinear form.

The particular case in which we are mainly interested is the case of the forward
cone C = C+ in R

D = R
1,D−1 with respect to the Minkowki scalar product. Here,

the cone C is self-dual C′ = C and C◦ is the open forward cone

C◦ =
{

x ∈ R
1,D−1 : x2 =<x,x> > 0,x0 > 0

}

and T = R
n× (−C◦) is the backward tube.

Theorem 8.19. For every distribution T ∈S (Rn)′ whose Fourier transform has its
support in the cone C there exists an analytic function F on the tube T ⊂ C

n with
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• |F(z)| ≤ c(1 + |z|)k(1 + de(z,∂T ))−m for suitable c ∈ R, k,m ∈ N. (Here, de is
the Euclidean distance in C

n = R
2n.)

• T is the boundary value of the holomorphic function F in the following sense.
For any f ∈S and y ∈ −C◦ ⊂ R

n:

lim
t↘0

∫

Rn
f (x)F(x+ ity)dx = T ( f ),

where the convergence is the convergence in S ′.

Proof. Let us first assume that T̂ is a polynomially bounded continuous function
g = g(p) with support in C. In that case the (Laplace transform) formula

F(z) := (2π)−n
∫

Rn
g(p)e−ip·zd p, z ∈T ,

defines a holomorphic function fulfilling the assertions of the theorem. Indeed, since
the exponent −ip · z = −ip · x + p · y has a negative real part p · y < 0 for all z =
x + iy ∈ T = R

n× (−C◦) the integral is well-defined. F is holomorphic in z since
one can take derivatives under the integral. To show the bounds is straightforward.
Finally, for y ∈ −C◦ and f ∈S (Rn) the limit of

∫
f (x)F(x+ ity)dx =

∫
f (x)
(

(2π)−n
∫

g(p)e−ip·xet p·yd p

)
dx

for t ↘ 0 is
∫

f (x)F−1g(x)dx = T ( f ).
Suppose now that T̂ is of the form P(−i∂ )g for a polynomial P ∈ C[X1, . . . ,Xn]

and g a polynomially bounded continuous function with support in C. Then

F(z) = P(z)(2π)−n
∫

Rn
g(p)e−ip·zd p,z ∈T ,

satisfies all conditions since F (P(x)F−1g) = P(−i∂ )g = T̂ .
Now the theorem follows from a result of [BEG67*] which asserts that for any

distribution S ∈ S ′ with support in a convex cone C there exists a polynomial P
and a polynomially bounded continuous function g with support in C and with S =
P(−i∂ )g. �

We now draw our attention to the Wightman distributions.

Analytic Continuation of Wightman Functions. Given a Wightman QFT with
field operator Φ : S (R1,D−1) −→ O (cf. Sect. 8.3) we explain in which sense and
to which extent the corresponding Wightman distributions (cf. Sect. 8.4)

WN ∈S ′(RDN)

can be continued analytically to an open connected domain UN ⊂ C
DN of the com-

plexification
C

DN ∼= R
DN ⊗C
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of R
DN .

The Minkowski inner product will be continued to a complex-bilinear form on
C

D by 〈z,w〉= z ·w = z0w0−∑D−1
j=1 z jw j.

An important and basic observation in this context is the possibility of identifying
the Euclidean R

D with the real subspace

E := {(it,x1, . . . ,xD−1) ∈ C
D : (t,x1, . . . ,xD−1) ∈ R

D}

the “Euclidean points” of C
D, since

〈(it,x1, . . . ,xD−1),(it,x1, . . . ,xD−1)〉=−t2−
D−1

∑
j=1

x jx j.

The Wightman distributions WN will be analytically continued in three steps into
open subsets UN containing a great portion of the Euclidean points EN , so that the
restrictions of the analytically continued Wightman functions WN to UN ∩EN define
a Euclidean field theory.
We have already used the fact that WN is translation-invariant and therefore depends
only on the differences ξ j := x j− x j+1, j = 1, . . . ,N−1:

wN(ξ1, . . . ,ξN−1) := WN(x1, . . . ,xN).

Each wN is the inverse Fourier transform of its Fourier transform ŵN , that is

wN(ξ1, . . . ,ξN−1) =

(2π)−D(N−1)
∫

RD(N−1)
ŵN(ω1, . . . ,ωN−1)e−i∑kωk·ξk dω1 . . .dωN−1 (8.7)

with

ŵN(ω1, . . . ,ωN−1) =
∫

RD(N−1)
w(ξ1, . . . ,ξN−1)ei∑kωk·ξk dξ1 . . .dξN−1.

By the spectrum condition the Fourier transform ŵN(ω1, . . . ,ωN−1) vanishes if
one of the ω1, . . . ,ωN−1 lies outside the forward cone C+ (cf. 8.17).

If we now take complex vectors ζk = ξk + iηk ∈C
D instead of the ξk in the above

formula for wN , then the integrand in (8.7) has the form

ŵN(ω)e−i∑kωk·ξk e∑kωk·ηk ,

and the corresponding integral will converge if ηk fulfills ∑kωk ·ηk < 0 for all ωk in
the forward cone. With the N-fold backward tube TN = (RD× (−C◦))N ⊂ (CD)N

this approach leads to the following result whose proof is similar to the proof of
Theorem 8.19.

Proposition 8.20. The formula

wN(ζ ) = (2π)−D(N−1)
∫

ŵN(ω)e−i∑kωk·ζk dω,ζ ∈TN−1,
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provides a holomorphic function in TN−1 with the property

lim
t↘0

wN(ξ + itη) = wN(ξ )

if ξ + iη ∈TN−1 and where the convergence is the convergence in S ′(RD(N−1)).

As a consequence, the Wightman distributions have analytic continuations to
{z ∈ (CD)N : Im(z j+1− z j) ∈C◦}.

This first step of analytic continuation is based on the spectrum condition. In a
second step the covariance is exploited.

The covariance implies that the identity

wN(ζ1, . . . ,ζN−1) = wN(Λζ1, . . . ,ΛζN−1) (8.8)

holds for (ζ1, . . . ,ζN−1)∈ (RD)N−1 and Λ∈ L. Since analytic continuation is unique
the identity also holds for (ζ1, . . . ,ζN−1) ∈TN−1 for those (ζ1, . . . ,ζN−1) satisfying
(Λζ1, . . . ,ΛζN−1) ∈TN−1.

Moreover, the identity (8.8) extends to transformations Λ in the (proper) complex
Lorentz group L(C). This group L(C) is the component of the identity of the group
of complex D×D-matrices Λ satisfying Λz ·Λw = z ·w with respect to the complex
Minkowski scalar product. This follows from the covariance and the fact that

Λ �→ wN(Λζ1, . . . ,ΛζN−1)

is holomorphic in a neighborhood of id
CD in L(C). By the identity (8.8) one obtains

an analytic continuation of wN to (Λ−1(TN−1))N−1.
Let

T e
N =
⋃
{Λ(TN) : Λ ∈ L(C)}

be the extended tube whereΛ(TN) = {(Λζ1, . . . ,ΛζN) : (ζ1, . . . ,ζN)∈TN}. We have
shown

Proposition 8.21. wN has an analytic continuation to the extended tube T e
N−1.

While the tube TN has no real points (that is points with only real coordinates
z j ∈ R

D) as is clear from the definition of the tube, the extended tube contains real
points.

For example, in the case N = 1 let x ∈ R
D be a real point with x · x < 0. We can

assume x2 = x3 = . . . = xD−1 = 0 with |x1|> |x0| by rotating the coordinate system.
The complex Lorentz transformation w = Λz, w0 = iz1,w1 = iz0 produces w = Λx
with Im w0 = x1, Im w1 = x0, thus Im w · Im w = (x1)2− (x0)2 > 0 and Λx ∈C◦ if
x1 < 0. In the case x1 > 0 one takes the transformation w = Λ′z,w0 = −iz1,w1 =
−iz0. These two transformations are indeed in L(C) since they can be connected
with the identity by Λ(θ) acting on the first two variables by
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Λ(θ) =
(

cosh iθ sinh iθ
sinh iθ cosh iθ

)
=
(

cosθ isinθ
isinθ cosθ

)

and leaving the remaining coordinates invariant.
We have proven that any real x with x · x < 0 is contained in the extended tube

T e
1 . Similarly, one can show the converse, namely that a real x point of T e

1 satisfies
x · x < 0. In particular, the subset R

D∩T e
1 is open and not empty.

For general N, we have the following theorem due to Jost:

Theorem 8.22. A real point (ζ1, . . . ,ζN) lies in the extended tube T e
N if and only if

all convex combinations

N

∑
j=1

t jζ j,
N

∑
j=1

t j = 1, t j ≥ 0,

are space-like, that is (∑N
j=1 t jζ j)2 < 0.

In the third step of analytic continuation we exploit the locality. For a permutation
σ ∈ SN , that is a permutation of {1, . . . ,N}, let Wσ

N denote the Wightman distribution
where the coordinates are interchanged by σ :

Wσ
N (x1, . . . ,xN) := WN(xσ(1), . . . ,xσ(N)),

and denote wσ
N(ξ1, . . . ,ξN−1) = WN(xσ(1), . . . ,xσ(N)),ξ j = x j− x j+1.

Proposition 8.23. Let wN and wσ
N be the holomorphic functions defined on the ex-

tended tube T e
N−1 by analytic continuation of the Wightman distributions wN and

wσ
N according to Proposition 8.21. Then these holomorphic functions wN and wσ

N
agree on their common domain of definition, which is not empty, and therefore de-
fine a holomorphic continuation on the union of their domains of definition.

This result will be obtained by regarding the permuted tube σT ′
N−1 which is

defined in analogy to ΛTN−1. The two domains T e
N−1 and σT e

N−1 have a nonempty
open subset V of real points ξ with ξ 2 < 0 in common according to Theorem 8.22.
Since all ξ j = x j − x j+1 are space-like, this implies that wN and wσ

N agree on this
open subset V and therefore wN and wσ

N agree in the intersection of the domains of
definition.

We eventually have the following result:

Theorem 8.24. wN has an analytic continuation to the permuted extended tube
T pe

N−1 =
⋃{σT e

N−1 : σ ∈ SN} and similarly WN has a corresponding analytic con-
tinuation to the permuted extended tube T pe

N . Moreover this tube contains all non-
coincident points of EN.

Here E is the space of Euclidean points, E := {(it,x1, . . . ,xD−1)∈C
D : (t,x1, . . . ,

xD−1) ∈ R
D}, and the last statement asserts that EN \Δ is contained in T pe

N where
Δ= {(x1, . . . ,xN) ∈ EN : x j = xk for some j �= k}.
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As a consequence the WN have an analytic continuation to EN \Δ and define the
so-called Schwinger functions

SN := WN |EN\Δ.

8.6 Euclidean Formulation

In order to state the essential properties of the Schwinger functions SN we use the
Euclidean time reflection

θ : E → E,(it,x1, . . . ,xD−1) �→ (−it,x1, . . . ,xD−1)

and its action Θ on

S+(RDN) = { f : EN → C : f ∈S (EN) with support in QN
+},

where

QN
+ = {(x1, . . . ,xN) : x j = (it j,x

1
j , . . . ,x

D−1
j ),0 < t1 < .. . < tN} :

Θ : S+(RDN)→S (RDN), Θ f (x1, . . . ,xN) := f (θx1, . . . ,θxN).

Theorem 8.25. The Schwinger functions SN are analytic functions SN : EN \Δ→C

satisfying the following axioms:

S1 (Covariance) SN(gx1, . . . ,gxN) = SN(x1, . . . ,xN) for Euclidean motions g =
(q,R),q ∈ R

D,R ∈ SO(D) (or R ∈ Spin(D)).

S2 (Locality) SN(x1, . . . ,xN) = SN(xσ(1), . . . ,xσ(N)) for any permutation σ .

S3 (Reflection Positivity)

∑
M,N

SM+N(Θ fM ⊗ fN)≥ 0

for finite sequences ( fN), fN ∈S+(RDN), where, as before,

gM ⊗ fN(x1, . . . ,xM+N) = gM(x1, . . . ,xM) fN(xM+1, . . . ,xM+N).

These properties of correlation functions are called the Osterwalder–Schrader
axioms.

Reconstruction. Several slightly different concepts are called reconstruction in the
context of axiomatic quantum field theory when Wightman’s axioms are involved
and also the Euclidean formulation (Osterwalder–Schrader axioms) is considered.
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For example from the axioms S1–S3 one can deduce the Wightman distributions
satisfying WD1–WD4 and this procedure can be called reconstruction. Moreover,
after this step one can reconstruct the Hilbert space (cf. Theorem 8.18) with the rel-
ativistic fields Φ as in W1–W3. Altogether, on the basis of Schwinger functions and
its properties we thus have reconstructed the relativistic fields and the corresponding
Hilbert space of states. This procedure is also called reconstruction.

But starting with S1–S3 one could, as well, build a Euclidean field theory by con-
structing a Hilbert space directly with the aid of S3 and then define the Euclidean
fields as operator-valued distributions similar to the reconstruction of the relativistic
fields as described in Sect. 8.4, in particular in the proof of the Wightman Recon-
struction Theorem 8.18. Of course, this procedure is also called reconstruction. In
the next chapter this kind of reconstruction is described with some additional details
in Sects. 9.2 and 9.3 in the two-dimensional case.

8.7 Conformal Covariance

The theories described in this chapter do not incorporate conformal symmetry, so
far. Let us describe how the covariance with respect to conformal mappings can be
formulated within the framework of the axioms. Recall (cf. Theorem 1.9) that the
conformal mappings not already included in the Poincaré group resp. the Euclidean
group of motions are the special conformal transformations

q �→ qb =
q−〈q,q〉b

1−2〈q,b〉+ 〈q,q〉〈b,b〉 , q ∈ R
n,

where b ∈ R
n, and the dilatations

q �→ qλ = eλq,q ∈ R
n,

where λ ∈ R.
The Wightman Axioms 8.3 are now extended in such a way that one requires U

to be a unitary representation U = U(q,Λ,b) of the conformal group SO(n,2) or
SO(n,2)/{±1} (cf. Sect. 2.2), resp. of its universal covering, such that in addition
to the Poincaré covariance

U(q,Λ)Φa(x)U(q,Λ)∗ =Φa(Λx),

the following has to be satisfied:

U(0,E,b)Φa(x)U(0,E,b)∗ = N(q,b)−haΦa(xb),

where N(x,b) = 1− 2〈q,b〉+ 〈q,q〉〈b,b〉 is the corresponding denominator and
where ha ∈R is a so-called conformal weight of the field Φa. Moreover, the confor-
mal covariance for the dilatations is
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U(λ )Φa(x)U(λ )∗ = eλdaΦa(xλ ),

with a similar weight da. Observe that N(x,b)−n resp. enλ is the Jacobian of the
transformation xb resp. xλ .

We now turn our attention to the two-dimensional case. Since the Lorentz
group of the Minkowski plane is isomorphic to the abelian group R (cf. Re-
mark 1.15) and the rotation group of the Euclidean plane is isomorphic to S, the
one-dimensional representations of the isometry groups are no longer trivial (as in
the higher-dimensional case). Consequently, in the covariance condition, in princi-
ple, these one-dimensional representations could occur, see also Remark 8.11. As
an example, one can expect that the Lorentz boosts

Λ=
(

coshχ sinhχ
sinhχ coshχ

)
, χ ∈ R,

in the two-dimensional case satisfy the following covariance condition:

U(Λ)Φa(x)U(Λ)∗ = eχsaΦa(Λx),

where sa would represent a spin of the field. Similarly, in the Euclidean case

U(Λ)Φa(x)U(Λ)∗ = eiαsaΦa(Λx),

if α is the angle of the rotation Λ.
It turns out that in two-dimensional conformal field theory this picture is even

refined further when formulating the covariance condition for the other confor-
mal transformations. The light cone coordinates are regarded separately in the
Minkowski case and similarly in the Euclidean case the coordinates are split into
the complex coordinate and its conjugate.

With respect to the Minkowski plane one first considers the restricted conformal
group (cf. Remark 2.16) only which is isomorphic to SO(2,2)/{±1} and not the full
infinite dimensional group of conformal transformations. With respect to the light
cone coordinates the restricted conformal group SO(2,2)/{±1} acts in the form of
two copies of SL(2,R)/{±1} (cf. Proposition 2.17). For a conformal transformation
g = (A+,A−),A± ∈ SL(2,R),

A+ =
(

a+ b+
c+ d+

)
, A− =

(
a− b−
c− d−

)
,

with the action

(A+,A−)(x+,x−) =
(

a+x+ +b+

c+x+ +d+
,

a−x−+b−
c−x−+d−

)
,

the covariance condition now reads
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U(g)Φa(x)U(g)∗ =
(

1
(c+x+ +d+)2

)h+
a
(

1
(c−x−+d−)2

)h−a
Φa(gx),

where the conformal weights h+
a ,h−a are in general independent of each other. Note

that the factor
1

(c+x+ +d+)2

is the derivative of

x+ �→ A+(x+) =
a+x+ +b+

c+x+ +d+
,

and therefore essentially the conformal factor.
The boost described above is given by g = (A+,A−) with a+ = exp 1

2χ =
d−,d+ = exp− 1

2χ = a−, the bs and cs being zero. By comparison we obtain

sa = h+
a −h−a ,

for the spins sa and, similarly, for the weights da related to the dilatations:

da = h+
a +h−a .

In the Euclidean case one writes the general point in the Euclidean plane as z =
x+ iy or t + iy and z = x− iy. The conformal covariance for the rotation w(z) = eiαz
will correspondingly be formulated by

U(Λ)Φa(z)U(Λ)∗ =
(

dw
dz

)ha
(

dw
dz

)ha

Φa(w),

where again ha,ha are independent. Equivalently, one writes

U(Λ)Φa(z,z)U(Λ)∗ =
(

dw
dz

)ha
(

dw
dz

)ha

Φa(w,w),

emphasizing the two components of z resp. w (cf. the Axiom 2 in the following
chapter). This is the formulation of covariance for other conformal transformations
as well.
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Chapter 9
Foundations of Two-Dimensional Conformal
Quantum Field Theory

In this chapter we study two-dimensional conformally invariant quantum field the-
ory (conformal field theory for short) by some basic concepts and postulates – that
is using a system of axioms as presented in [FFK89] and based on the work of Os-
terwalder and Schrader [OS73], [OS75]. We will assume the Euclidean signature
(+,+) on R

2 (or on surfaces), as it is customary because of the close connection
of conformal field theory to statistical mechanics (cf. [BPZ84] and [Gin89]) and its
relation to complex analysis.

We do not use the results of Chap. 8 where the axioms of quantum field theory
are investigated in detail and for arbitrary spacetime dimensions nor do we assume
the notations to be known in order to keep this chapter self-contained. However, the
preceding chapter may serve as a motivation for several concepts and constructions.
In particular, the presentation of the axioms explains why locality for the correlation
functions in Axiom 1 below is expressed as the independence of the order of the in-
dices, and why the covariance in Axiom 2 does not refer to the unitary representation
of the Poincaré group. Moreover, in the light of the results of the preceding chapter
the reconstruction used below on p. 158 is a general principle in quantum field the-
ory relating the formulation based on field operators with an equivalent formulation
based on correlation functions.

9.1 Axioms for Two-Dimensional Euclidean
Quantum Field Theory

The basic objects of a two-dimensional quantum field theory (cf. [BPZ84], [IZ80],
[Gaw89], [Gin89], [FFK89], [Kak91], [DMS96*]) are the fields Φi, i ∈ B0, subject
to a number of properties. These fields are also called field operators or operators.
They are defined as maps on open subsets M of the complex plane C ∼= R

2,0 (or
on Riemann surfaces M). They take their values in the set O = O(H) of (possibly
unbounded and mostly self-adjoint) operators on a fixed Hilbert space H. To be
precise, these field operators are usually defined only on spaces of test functions on
M, e.g. on the Schwartz space S (M) of rapidly decreasing functions or on other

Schottenloher, M.: Foundations of Two-Dimensional Conformal Quantum Field Theory. Lect.
Notes Phys. 759, 153–170 (2008)
DOI 10.1007/978-3-540-68628-6 10 c© Springer-Verlag Berlin Heidelberg 2008
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suitable spaces of test functions. Hence, they can be regarded as operator-valued
distributions (cf. Definition 8.8).

The matrix coefficients 〈v|Φi(z)|w〉 of the field operators are supposed to be well-
defined for v,w ∈ D in a dense subspace D ⊂ H. Here, 〈v,w〉, v,w ∈ H, denotes the
inner product of H and 〈v|Φi(z)|w〉 is the same as 〈v,Φi(z)w〉.

The essential parameters of the theory, which connect the theory with experimen-
tal data, are the correlation functions

Gi1...in(z1, . . . ,zn) := 〈Ω|Φi1(z1) . . .Φin(zn)|Ω〉.

These functions are also called n-point functions or Green’s functions. Here,
Ω ∈ H is the vacuum vector. These correlation functions have to be interpreted as
vacuum expectation values of time-ordered products Φi1(z1) . . .Φin(zn) of the field
operators (time ordered means Re zn > .. . > Re z1, or |zn|> .. . > |z1| for the radial
quantization). They usually can be analytically continued to

Mn := {(z1, . . . ,zn) ∈ C
n : zi �= z j for i �= j},

the space of configurations of n points. (To be precise, they have a continuation to
the universal covering M̃n of Mn and thus they are no longer single valued on Mn, in
general. In this manner, the pure braid group Pn appears, which is the fundamental
group π1(Mn) of Mn.) For simplification we will assume in the formulation of the
axioms that the Gi1...in are defined on Mn.

The positivity of the hermitian form, that is the inner product of H, can be ex-
pressed by the so-called reflection positivity of the correlation functions. This prop-
erty is defined by fixing a reflection axis – which typically is the imaginary axis in
the simplest case – and requiring the correlation of operator products of fields on
one side of the axis with their reflection on the other side to be non-negative (cf.
Axiom 3 below).

Now, the two-dimensional quantum field theory can be described completely by
the properties of the correlation functions using a system of axioms (Axiom 1–6 in
these notes, see below). The field operators and the Hilbert space do not have to be
specified a priori, they are determined by the correlation functions (cf. Lemma 9.2
and Theorem 9.3).

To state the axioms we need a few notations:

M+
n := {(z1, . . . ,zn) ∈Mn : Re z j > 0 for j = 1, . . . ,n},

S +
0 := C,

S +
n := { f ∈S (Cn) : Supp( f )⊂M+

n }.

Here, S (Cn) is the Schwartz space of rapidly decreasing smooth functions, that
is the complex vector space of all functions f ∈C∞(Cn) for which

sup
|α|≤p

sup
x∈R2n

|∂α f (x)|(1+ |x|2)k < ∞,
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for all p,k ∈ N. We have identified the spaces C
n and R

2n and have used the real
coordinates x = (x1, . . . ,x2n) as variables. ∂α is the partial derivative for the multi-
index α ∈N

2n with respect to x. Supp( f ) denotes the support of f , that is the closure
of the set {x ∈ R

2n : f (x) �= 0}.
It makes sense to write z ∈C as z = t + iy with t,y ∈R, and to interpret z = t− iy

as a quantity not depending on z. In this sense one sometimes writes G(z,z) instead
of G(z), to emphasize that G(z) is not necessarily holomorphic. In the notation z =
t + iy, y is the “space coordinate” and t is the (imaginary) “time coordinate”.

The group E = E2 of Euclidean motions, that is the Euclidean group (which
corresponds to the Poincaré group in this context), is generated by the rotations

rα : C→ C, z �→ eiαz, α ∈ R,

and the translations

ta : C→ C, z �→ z+a, a ∈ C.

Further Möbius transformations are the dilatations

dτ : C→ C, z �→ eτz, τ ∈ R,

and the inversion

i : C→ C, z �→ z−1, z ∈ C\{0}.

These conformal transformations generate the Möbius group Mb (cf. Sect. 2.3). All
other global conformal transformations (cf. Definition 2.10) of the Euclidean plane
(with possibly one singularity) are generated by Mb and the time reflection

θ : C→ C, z = t + iy �→ −t + iy =−z.

(cf. Theorems 1.11 and 2.11 and the discussion after Definition 2.12)

Osterwalder–Schrader Axioms ([OS73], [OS75], [FFK89])
Let B0 be a countable index set. For multi-indices (i1, . . . , in) ∈ Bn

0 we also use the
notation i = i1 . . . in = (i1, . . . , in). Let B =

⋃
n∈N0

Bn
0. The quantum field theory is

described by a family (Gi)i∈B of continuous and polynomially bounded correlation
functions

Gi1...in : Mn → C, G /0 = 1,

subject to the following axioms:

Axiom 1 (Locality) For all (i1, . . . , in) ∈ Bn
0,(z1, . . . ,zn) ∈ Mn, and every permuta-

tion π : {1, . . . ,n}→ {1, . . . ,n} one has

Gi1,...,in(z1, . . . ,zn) = Giπ(1)...iπ(n) (zπ(1), . . . ,zπ(n)).

Axiom 2 (Covariance) For every i ∈ B0 there are conformal weights hi,hi ∈ R (hi

is not the complex conjugate of hi, but completely independent of hi), such that for
all w ∈ E and n≥ 1 one has
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Gi1...in(z1,z1, . . . ,zn,zn)

=
n

∏
j=1

(
dw
dz

(z j)
)h j
(

dw
dz

(z j)
)h j

Gi1...in(w1,w1, . . . ,wn,wn), (9.1)

with w j := w(z j), w j := w(z j), h j := hi j .

Here, si := hi−hi is called the conformal spin for the index i and di := hi +hi is
called the scaling dimension.
Furthermore, we assume

hi−hi,hi +hi ∈ Z, i ∈ B0.

As a consequence, there do not occur any ambiguities concerning the exponents.
In particular, this is satisfied whenever

hi,hi ∈
1
2

Z.

See Hawley/Schiffer [HS66] for a discussion of this condition.
The covariance of the correlation functions formulated in Axiom 2 corresponds

to the transformation behavior of tensors or generalized differential forms under
change of coordinates when extended to more general conformal transformations
(see also p. 164).

The covariance conditions severely restricts the form of 2-point functions and
3-point functions. Because of the covariance with respect to translations, all corre-
lation functions Gi1...in for n≥ 2 depend only on the differences zi j := zi− z j, i �= j,
i, j ∈ {1, . . . ,n}. Typical 2-point functions Gi1i1 = G, which satisfy Axiom 2, are

G = const. with h = h = 0,

G(z1,z1,z2,z2) = Cz −2
12 z −2

12 with h = h = 1,

G(z1,z2) = Cz −4
12 with h = 2,h = 0.

A general example is

G(z1,z2) = Cz −2h
12 z −2h

12 with h,h ∈ 1
2

Z.

Hence, for the case h = h,

G(z1,z1,z2,z2) = C|z12|−4h = C|z12|−2d .

Typical 2-point functions G = Gi1i2 with i1 �= i2, for which Axiom 2 is valid, are

G(z1,z1,z2,z2) = Cz −h1
12 z −h2

12 z −h1
12 z −h2

12 .

All these examples are also Möbius covariant.
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For the function F = Gi1i1 with

F(z1,z1,z2,z2) =− log |z12|2

Axioms 1 and 2 hold as well (with arbitrary h,h, h = h). However, this function
is not Möbius covariant because one has e.g., for w(z) = eτz, τ �= 0, and in the case
h = h �= 0,

2

∏
j=1

(
dw
dz

(z j)
)h(dw

dz
(z j)
)h

F(w1,w2)

= (eτ)2h+2h(− loge2τ |z12|2) �=− log |z12|2.

In particular, F is not scaling covariant in the sense of Axiom 4 (see below). A
typical 3-point function is

G(z1,z1,z2,z2,z3,z3)

= z −h1−h2+h3
12 z −h2−h3+h1

23 z −h3−h1+h2
13

z−h1−h2+h3
12 z−h2−h3+h1

23 z−h3−h1+h2
13 , (9.2)

as can be checked easily. It is not difficult to see that this 3-point function is also
Möbius covariant, hence conformally covariant.

We describe a rather simple example involving all correlation functions.

Example 9.1. Let B0 = {1} and n := (1, . . .1) ∈ Bn
0 = {n}. The functions Gn are

supposed to be zero if n is odd and

G2n(z1, . . . ,z2n) =
kn

2nn! ∑σ∈S2n

n

∏
j=1

1
(zσ( j)− zσ(n+ j))2 ,

where SN is the group of permutations of N elements and where k ∈C is a constant.
The weights are h1 = 1, h1 = 0.

If the exponent “2” in the denominator is replaced with 2m we get another exam-
ple with conformal weight h = m instead of 1 and h = 0.

The dependence in z and z can be treated independently, as in the example. The
example can be extended by defining F2n(z,z) = G2n(z)G2n(z), and the resulting
theory has the weights h1 = 1 = h1.

Note that the correlation functions in Example 9.1 are covariant with respect
to general Möbius transformations, even if the z-dependence is included. Möbius
covariance (and hence conformal covariance) holds as well if the exponent 2 is
replaced by 2m.

In the following, we mostly treat only the dependence in z in order to simplify
the formulas. The general case can easily be derived from the formulas respecting
only the dependence on z (see p. 88 for an explanation).
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Next, we formulate reflection positivity (cf. Sect. 8.6). Let S + be the space of
all sequences f = ( fi)i∈B with fi ∈ S +

n for i ∈ Bn
0 and fi �= 0 for at most finitely

many i ∈ B.

Axiom 3 (Reflection Positivity) There is a map ∗ : B0 → B0 with ∗2 = idB0 and a
continuation ∗ : B→ B, i �→ i∗, so that

1. Gi(z) = Gi∗(θ(z)) = Gi∗(−z∗) for i ∈ B, where z∗ is the complex conjugate of z.
2. 〈 f , f 〉 ≥ 0 for all f ∈S +.

Here, 〈 f , f 〉 is defined by

∑
i, j∈B

∑
n,m

∫

Mn+m

Gi∗ j(θ(z1), . . . ,θ(zn),w1, . . . ,wm) fi(z)∗ f j(w)dnzdmw.

In the Example 9.1 for ∗1 = 1 the two conditions of Axiom 3 are satisfied.

Lemma 9.2 (Reconstruction of the Hilbert Space). Axiom 3 yields a positive
semi-definite hermitian form H on S + and hence the Hilbert space H as the com-
pletion of S +/kerH with the inner product 〈 , 〉.

We now obtain the field operators by using a multiplication in S + in the same
way as in the proof of the Wightman Reconstruction Theorem 8.18. Indeed, Φ j

for j ∈ B0 shall be defined on the space S + = S +
1 of distributions with values

in a space of operators on H. Given f ∈ S +
1 and g ∈ S +, g = (gi)i∈B, we define

Φ j( f )([g]) to be the equivalence class (with respect to kerH) of g× f (the expected
value of Φ j at f ), with

g× f = ((g× f )i1...in+1)i1...in+1∈B,

where

(g× f )i1...in+1(z1, . . . ,zn+1) := gi1...in(z1, . . . ,zn) f (zn+1)δ jin+1 .

It can be shown (cf. [OS73], [OS75]) that this construction yields a unitary repre-
sentation U of the group E of Euclidean motions of the plane in H. Moreover, there
exists a dense subspace D⊂H left invariant by the unitary representation such that
the maps Φ j( f ) : [g] �→ [g× f ] are defined on D for all j ∈ B0 and Φ j( f )(D) ⊂ D.
In addition, with the vacuum Ω ∈ H (namely Ω = [ f ], with f /0 = 1 and fi = 0 for
i �= /0) the following properties are satisfied:

Theorem 9.3. (Reconstruction of the Field Operators)

1. For all j ∈ B0 the mapping Φ j : S + → End(D) is linear, and Φ j is a field oper-
ator. Moreover, Φ j(D) ⊂ D, Ω ∈ D, and the unitary representation U leaves Ω
invariant.

2. The fields Φ j transform covariantly with respect to the representation U:

U(w)Φ j(z)U(w)∗ =
(
∂w
∂ z

)hi

Φ j(w(z)).
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3. The matrix coefficients 〈Ω|Φi( f )|Ω〉 can be represented by analytic functions
and for Re zn > .. . > Re z1 > 0 the correlation functions agree with the given
functions

〈Ω|Φi1(z1) . . .Φin(zn)|Ω〉= Gi1...in(z1, . . . ,zn).

Furthermore, if the dependence on z and z is taken into account the corresponding
correlation functions Gi1...in(z1,z1, . . . ,zn,zn) are holomorphic in M>

n ×M>
n , where

M>
n := {z ∈M+

n : Re zn > .. . > Re z1 > 0}.

They can be analytically continued into a larger domain N ⊂C
n×C

n. A general
description of the largest domain (the domain of holomorphy for the Gi1...in) is not
known.

Similar results are true for other regions in C instead of the right half plane

{w ∈ C : Re w > 0},

e.g., for the disc (radial quantization). In this case the points z∈C are parameterized
as z = eτ+iα with the time variable τ and the space variable α , which is cyclic. The
time order becomes |zn|> .. . > |z1|.

The Axioms 1–3 describe essentially a general two-dimensional Euclidian field
theory as in Sect. 8.6 where no conformal invariance is required.

9.2 Conformal Fields and the Energy–Momentum Tensor

A two-dimensional quantum field theory with field operators

(Φi)i∈B0 ,

satisfying Axioms 1–3, is a conformal field theory if the following conditions hold:

• the theory is covariant with respect to dilatations (Axiom 4),
• it has a divergence-free energy–momentum tensor (Axiom 5), and
• it has an associative operator product expansion for the primary fields (Axiom 6).

Axiom 4 (Scaling Covariance) The correlation functions

Gi, i ∈ B,

satisfy (34) also for the dilatations w(z) = eτz, τ ∈ R. Hence

Gi(z1, . . . ,zn) = (eτ)h1+...+hn+h1+...+hn Gi(eτz1, . . . ,e
τzn)

for (z1, . . . ,zn) ∈M, i = (i1, . . . , in) and h j = hi j .

The correlation functions in the Example 9.1 are scaling covariant.
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Lemma 9.4. In a quantum field theory satisfying Axioms 1–4, any 2-point function
Gi j has the form

Gi j(z1,z2) = Ci jz
−(hi+h j)
12 z

−(hi+h j)
12 (z12 = z1− z2)

with a suitable constant Ci j ∈ C. Hence, for i = j,

Gii(z1,z2) = Ciiz
−2h

12 z −2h
12 .

Similarly, any 3-point function Gi jk is a constant multiple of the function G in (9.1):

Gi jk = Ci jkG, with Ci jk ∈ C.

In particular, the 2- and 3-point functions are completely determined by the con-
stants Ci j,Ci jk.

Proof. As a consequence of the covariance with respect to translations, G := Gi j

depends only on z12 = z1−z2, that is G(z1,z2) = Gi j(z1−z2,0). For z = reiα = eτeiα

one has G(z,0) = G(eτ+iα1,0). From Axioms 2 and 4 it follows

G(1,0) = (eτ+iα)hi(eτ−iα)hi(eτ+iα)h j(eτ−iα)h j G(eτ+iα1,0).

This implies G(z,0) = z−(hi+h j)z−(hi+h j)G(1,0), C := G(1,0).
A similar consideration leads to the assertion on 3-point functions. �
The 4-point functions are less restricted, but they have a specific form for all the-

ories satisfying Axioms 1–3 where the correlation functions are Möbius covariant.
To show this, one can use the following differential equations:

Proposition 9.5 (Conformal Ward Identities). Under the assumption that the cor-
relation function G = Gi1...in(z1, . . . ,zn) satisfies the covariance condition (9.1) for
all Möbius transformations the following Ward identities hold:

0 =
n

∑
j=1

∂z j G(z1, . . . ,zn),

0 =
n

∑
j=1

(z j∂z j +h j)G(z1, . . . ,zn),

0 =
n

∑
j=1

(z2
j∂z j +2h jz j)G(z1, . . . ,zn)

Proof. These identities are shown in the same way as Lemma 9.4. We focus on the
third identity. The Möbius covariance applied to the conformal transformation

w = w(z) =
z

1−ζ z
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with a complex parameter ζ yields

G(z1, . . . ,zn) =
n

∏
i=1

(
1

1−ζ zi

)2hi

G(w1, . . . ,wn)

because of
∂w
∂ z

=
1

(1−ζ z)2 ,

where w j = w(z j). The derivative of this equality with respect to ζ is

0 =
n

∏
i=1

(
1

1−ζ zi

)2hi n

∑
j=1

2h j
1

1−ζ z j
z jG(w1, . . . ,wn)

+
n

∏
i=1

(
1

1−ζ zi

)2hi n

∑
j=1

z2
j

(1−ζ z j)2 ∂z j G(w1, . . . ,wn),

from which the identity follows by setting ζ = 0. �

It can be seen that the solutions of these differential equations in the case of n = 4
are of the following form:

G(z1,z2,z3,z4) = F(r(z),r(z))∏
i< j

z
−(hi+h j)+ 1

3 h
i j ∏

i< j
z
−(hi+h j)+ 1

3 h
i j ,

where h = h1 + h2 + h3 + h4 and correspondingly for h, and where F is a holomor-
phic function in the cross-ratio

r(z) := (z12z34)/(z13z24)

of the z12,z34,z13,z24 and in r(z).
Analogous statements hold for the n-point functions, n ≥ 5. As an essential fea-

ture of conformal field theory we observe that the form of the n-point functions can
be determined by using the global conformal symmetry. They turn out to be Laurent
monomials in the zi j,zi j up to a factor similar to F .

Axiom 5 (Existence of the Energy–Momentum Tensor)
Among the fields (Φi)i∈B0 there are four fields Tμν , μ ,ν ∈ {0,1}, with the following
properties:

• Tμν = Tνμ , Tμν(z)∗ = Tνμ(θ(z)),
• ∂0Tμ0 +∂1Tμ1 = 0 with ∂0 := ∂

∂ t , ∂1 := ∂
∂y ,

• d(Tμν) = hμν +hμν = 2, s(T00−T11±2iT01) =±2.
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Theorem 9.6 (Lüscher–Mack). [LM76] The Axioms 1–5 imply

• tr(Tμν) = T μ
μ = T00 +T11 = 0.

Therefore, T := T00 − iT01 = 1
2 (T00 − T11 − 2iT01) is independent of z, that is

∂T = 0. Hence, T is holomorphic . In the same way T := T00 + iT01 is independent
of z, and therefore antiholomorphic. For the corresponding conformal weights we
have h(T ) = h(T ) = 2 and h(T ) = h(T ) = 0.

• By

L−n :=
1

2πi

∮

|ζ |=1

T (ζ )
ζ n+1 dζ , L−n :=

1
2πi

∮

|ζ |=1

T (ζ )
ζ n+1 dζ (9.3)

the operators Ln,Ln on D ⊂ H are defined, which satisfy the commutation rela-
tions of two commuting Virasoro algebras with the same central charge c ∈ C:

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2−1)δn+m,

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2−1)δn+m,

[Ln,Lm] = 0.

• The representations of the Virasoro algebra defined by Ln and Ln, respectively,
are unitary: Ln

∗ = L−n and Ln
∗ = L−n.

Incidentally, the proof given in [LM76] is based on the Minkowski signature.
The Ln, Ln can be interpreted as Fourier coefficients of T , T , since

T (z) = ∑
n∈Z

Lnz−(n+2), T (z) = ∑
n∈Z

Lnz−(n+2). (9.4)

This is how conformal symmetry in the sense of the representation theory of the
Virasoro algebra (cf. Sect. 6) appears in the axiomatic presentation of conformal
field theory. The operators Ln, Ln define a unitary representation of Vir×Vir. In
general, this representation decomposes into unitary highest-weight representations
as follows: ⊕

W (c,h)⊗W (c,h),

where one has to sum over a suitable collection of central charges c and conformal
weights h,h. The theory is called minimal, if this sum is finite.

An important tool in conformal field theory is the operator product expansion
of two operators A and B of the form A = Φ(z1) and B = Ψ(z2), where Φ,Ψ are
field operators. Before we treat operator product expansions in the next section (and
also in the next chapter on vertex algebras) let us briefly note that in the case of
Φ=Ψ= T the product T (z1)T (z2) has the operator product expansion

T (z1)T (z2)∼
c
2

1
(z1− z2)4 +

2T (z2)
(z1− z2)2 +

dT
dz2

(z2)
1

(z1− z2)
. (9.5)

The symbol “∼” signifies asymptotic expansion, that is “=” modulo a regular
function R(z1,z2).
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The validity of (9.5) turns out to be equivalent to the commutation relations of
the Ln, Ln (see also Theorem 9.6 and the formula (10.2) in Sect. 10.2).

9.3 Primary Fields, Operator Product Expansion, and Fusion

The primary fields are distinguished by the property that their correlation functions
have the covariance property as in Axiom 2 for arbitrary local (that is defined on
open subsets of C) holomorphic transformations w = w(z) as well. This covariance
expresses the full conformal symmetry. However, the covariance property (9.1) for
general w only holds “infinitesimally”. This infinitesimal version of (9.1) leads to
the following concept of a primary field.

Definition 9.7 (Primary Field). A conformal field Φi, i ∈ B0, is called a primary
field if

[Ln,Φi(z)] = zn+1∂Φi(z)+hi(n+1)znΦi(z) (9.6)

for all n ∈ Z, where ∂ = ∂
∂ z (and correspondingly for the z-dependence, which we

shall not consider in the following).

The primary field property can be characterized in the following way: the primary
fields are precisely those field operators Φi, i ∈ B0, which have the following op-
erator product expansion (OPE) with the energy–momentum tensor T (cf. Corol-
lary 10.43):

T (z1)Φi(z2)∼
hi

(z1− z2)2Φi(z2)+
1

z1− z2

∂
∂ z2

Φi(z2). (9.7)

(Note that this condition and other formulas used in physics as well as several cal-
culations and formal manipulations become clearer within the formalism of vertex
algebras which we introduce in the next chapter.)

The invariance required by (9.6) can also be interpreted as a formal infinitesimal
version of (9.1) in Axiom 2 for the transformation w = w(z) = z + zn+1. Assume
that there would exist a Virasoro group, that is Lie group for Vir with a reasonable
exponential map (which is not the case, cf. Sect. 5.4), and assume that we would
have a corresponding unitary representation of this symmetry group (or of a central
extension of Diff+(S) according to Chap. 3) denoted by U . This would imply the
formal identity

U(etLn)Φi(z)U(e−tLn) =
(

dwt

dz

)hi

Φi(wt(z)) (9.8)

for wt(z) = z + tzn+1 (here we take Ln = −(zn+1) d
dz , cf. Sect. 5.2). Since U is uni-

tary, the globalized formal analogue of (9.8) for holomorphic transformations leads
to (9.1) for wt :

Gi(z) =
(

dwt

dz

)hi

Gi(wt(z)).
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Applying d
dt

∣
∣
t=0 to the equation (9.8) we obtain

[Ln,Φi(z)]

on the left-hand side and

d
dt

(1+ t(n+1)zn)hiΦi(z)
∣
∣
∣
∣t=0 +

d
dt
Φi(wt(z))

∣
∣
∣
∣
t=0

= hi(n+1)znΦi(z)+ zn+1 ∂
∂ z
Φi(z)

on the right-hand side. This discussion motivates the notion of a primary field, and
in particular (9.6).

The correlation functions of primary fields satisfy more than the three identities
in Proposition 9.5.

Proposition 9.8 (Conformal Ward Identities). For every correlation function G =
Gi1...in(z1, . . . ,zn) where all the fields Φi j are primary the Ward identities

0 =
n

∑
j=1

(zm+1
j ∂z j +(m+1)h jz

m
j )G(z1, . . . ,zn)

are satisfied for all m ∈ Z.

To show these identities one proceeds as in the proof of Proposition 9.5, but with
the conformal transformation w(z) = z+ζ zm+1.

The energy–momentum tensor T is not a primary field, as one can see by com-
paring the expansions (9.5) and (9.7), except for the special case of c = 0 and h = 2.
The deviation from T being primary can be described by the Schwarzian derivative.

From a more geometrical point of view, a primary field with h = 1, h = 0 or bet-
ter its matrix coefficient Gi = 〈Ω,ΦiΩ〉 corresponds to a meromorphic differential
form. In general, it has the transformation property of a quantity like

Gi(z,z)(dz)h(dz)h = Gi(w,w)(dw)h(dw)h,

where w = w(z) is a local conformal transformation. In geometric terms such a Gi

could be understood as a meromorphic section in the vector bundle Kh⊗K
h

where
K is the canonical bundle of the respective Riemann surface.

Let Φi = Φ be a primary field of conformal weight hi = h and assume that the
asymptotic state v = limz→0Φ(z)Ω exists as a vector in the Hilbert space H of states
(v is often denoted by |h〉).

We have [L0,Φ(z)]Ω= L0Φ(z)Ω and [L0,Φ(z)]Ω= z∂Φ(z)Ω+hΦ(z)Ω. There-
fore v is an eigenvector of L0 with eigenvalue h. Moreover, for n > 0 we de-
duce in the same way Lnv = 0 by using LnΦ(z)Ω = [Ln,Φ(z)]Ω = zn+1∂Φ(z)Ω+
h(n+1)znΦΩ. Consequently,

L0v = hv,Lnv = 0,n > 0.
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According to our exposition on Virasoro modules in Chapt. 6 we come to the fol-
lowing conclusion:

Remark 9.9. The asymptotic state v = limz→0Φ(z)Ω of a primary field defines a
Virasoro module

{L−n1 . . .L−nk v : n≥ 0,k ∈ N} ⊂H

with highest-weight vector v.

The states L−n1 . . .L−nk v can be viewed as excited states of the ground state and
they are called descendants of v.

It is in general required that the collection of all descendants of the asymptotic
states belonging to the primary fields has a dense span in the Hilbert space H of
states. In this case, we obtain a decomposition of H into Virasoro modules as de-
scribed above but more concretely given by the primary fields.

Definition 9.10. In a quantum field theory satisfying Axioms 1–5 let

B1 := {i ∈ B0 : Φi is a primary field}.

The associated conformal family [Φi] for i ∈ B1 is the complex vector space gener-
ated by

Φα
i (z) := L−α1(z) . . .L−αN (z)Φi(z) (9.9)

for α = (α1, . . . ,αN) ∈ N
N , α1 ≥ . . .≥ αN > 0, where

L−n(z) :=
1

2πi

∮
T (ζ )

(ζ − z)n+1 dζ

for z ∈ C. The operators Φα
i (z) are called secondary fields or descendants.

The operators L−n(z) are in close connection with the Virasoro generators Ln

because of

L−n =
1

2πi

∮
T (ζ )
ζ n+1 dζ = L−n(0)

(cf. Theorem 9.6). The secondary fields Φα
i can be expressed as integrals as well.

For instance, for Φk
i , k ∈ N,

Φk
i (z) = L−k(z)Φi(z) =

1
2πi

∮
T (ζ )

(ζ − z)k+1Φi(z)dζ .

Moreover, the correlation functions of the secondary fields can be determined in
terms of correlation functions of primary fields by means of certain specific linear
differential equations. It therefore suffices for many purposes to know the correla-
tion functions of the primary fields and in particular the constants Ci jk for i, j,k∈B1.

For any fixed z ∈ C the conformal family [Φi] of a given primary field Φi de-
fines a highest-weight representation with weight (ci,hi) (cf. Sect. 6) in a natural
manner. v := Φi(z) is the highest-weight vector, L0(v) = hiv, Ln(v) := 0 for n ∈ N,
and L−n(v) :=Φn

i (z) for n ∈ N.



166 9 Two-Dimensional Conformal Quantum Field Theory

Remark 9.11 (State Field Correspondence). Assume that the asymptotic states
of the primary fields together with their descendants generate a dense subspace V of
H. Then to each state a∈V there corresponds a field Φ such that limz→0Φ(z)Ω= a.

To show this property we only have to observe that for a descendant state of the
form w = L−α1 . . .L−αNΦi(0)Ω with respect to a primary field Φi one has

w = lim
z→0

Φα
i (z)Ω= lim

z→0
L−α1(z) . . .L−αN (z)Φi(z)Ω.

Of course, the remark does not assert that a field corresponding to a state is already
of the form Φi with i∈ B0. It rather means that there is always a suitable field among
the descendants of the primary fields.

Note that the state field correspondence is one of the basic requirements in the
definition of vertex algebras (see Sect. 10.4). If we denote the field Φ(z) in the last
remark by Y (a,z) we are close to a vertex algebra, where Y (a,z) is supposed to be a
formal series with coefficients in End V .

Operator Product Expansion. For the primary fields of a conformal field the-
ory it is postulated (according to the fundamental article of Belavin, Polyakov, and
Zamolodchikov [BPZ84]) that they obey the following operator product expansion
(OPE)

Φi(z1)Φ j(z2)∼ ∑
k∈B0

Ci jk(z1− z2)hk−hi−h jΦk(z2) (9.10)

with the constants Ci jk that occur already in the expression (9.2) of the 3-point func-
tions (cf. Lemma 9.4). Similar expansions hold for the descendants.

The central object of conformal field theory is the determination of

• the scaling dimensions di = hi +hi,
• the central charge ci for the family [Φi], and
• the coefficients Ci jk (structure constants)

from the operator product expansion (9.10) using the conformal symmetry. When
all these constants are calculated one has a complete solution.

Proposition 9.12 (Bootstrap Hypothesis). This can be achieved if the OPE (9.10)
is required in addition to be associative. (See also Axiom 6 below.)

Some comments are due concerning the use of terms like “operator product”
and its “associativity”. First of all, the expansion (9.10) can only be valid for the
corresponding matrix coefficients or better for the vacuum expectation values. In
particular, we do not have an algebra of operators with a nice expansion of the prod-
uct. Therefore the associativity constraint does not refer to the associativity of a true
multiplication in a ring as the term suggests from the mathematical viewpoint, but
simply means that the respective behavior of the expansions of the product of three
or more primary fields is independent of the order the expansions are executed. And
this equality concerns again only the vacuum expectation values and it is restricted
to the singular terms in the expansions.
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Note that in the language of vertex algebras the “associativity” constraint has a
nice and clear formulation, cf. Theorem 10.36. Furthermore, the associativity is a
consequence of the basic properties of a vertex algebra and not an additional postu-
late.

In any case, the associativity of the OPE (9.10) in this sense is strong enough to
determine all generic 4-point functions

Gi1i2i3i4(z1,z2,z3,z4,z1,z2,z3,z4),(i1, i2, i3, i4) ∈ B4
1.

This can be done by using the associativity of the OPE to obtain several expan-
sions of Gi1i2i3i4 differing by the order in which we expand. For instance, one can
first expand with respect to the indices i1, i2 and i3, i4 and then expand the result-
ing two expansions to obtain a series ∑mαmGm or one expands first with respect
to the indices i1, i4 and i2, i3 (here we need locality) and then expand the resulting
expansions to obtain another series ∑mβmGm. Associativity means that the resulting
two expansions are the same. This gives infinitely many equations for the structure
constants Ci jk of the 3-pointfunctions and allows in turn to determine Gi1i2i3i4 .

We know already that such a function depends only on the cross-ratios r(z) :=
(z12z34)/(z13z24) and r(z) (see p. 161). Since these ratios are invariant under global
conformal transformations on the extended plane we can set z1 = ∞,z2 = 1,z3 = z,
and z4 = 0. The above correlation function reduces under this change of coordi-
nates to

G(z,z) = lim
z1,z1→∞

Gi1i2i3i4(z1,1,z,0,z1,1,z,0).

The associativity of the OPE (9.10) allows to represent G with the aid of so-called
(holomorphic and antiholomorphic, respectively) “conformal blocks” F r, F

s
:

G(z,z) = ∑
k∈B1

Ci1i2kCi3i4kF
k(z)F

k
(z),

where the Ci1i2k,Ci3i4k ∈C are the coefficients of the 3-point functions in Lemma 9.4.
The associativity can be indicated schematically in diagrammatic language:

The diagram has a physical interpretation as crossing symmetry.
Note that there is an additional way applying the associativity of the OPE in case

of the 4-point function leading to another diagram and two further equalities.
A conformal field theory can also be defined on arbitrary Riemann surfaces in-

stead of C. Then the F r, F
s

depend only on the complex structure of the sur-
face. Finally, they can be considered as holomorphic sections on the appropriate
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moduli spaces with values in suitable line bundles (cf. [FS87], [TUY89], [KNR94],
[Uen95], [Sor95], [Bea95], [Tyu03*] and Chap. 11).

In any case a conformal field theory has to satisfy – in addition to the Axioms
1–5 – the following axiom:

Axiom 6 (Operator Product Expansion) The primary fields have the OPE (9.10).
This OPE is associative.

Concluding Remarks:

1. All n-point functions of the primary fields can be derived from the Gi for i ∈ B4
1.

2. The expansions (9.10) are the fusion rules, which can be written formally as

[Φi]× [Φ j] = ∑
l∈B1

[Φl ],

or, carrying more information, as

Φi×Φ j =∑
l

Nl
i jΦl ,

where Nl
i j ∈ N0 is the number of occurrences of elements of the family [Φl ] in

the OPE of Φi(z)Φ j(0). The coefficients Nk
i j define the structure of a fusion ring,

cf. Sect. 11.4.
3. We have sometimes passed over to radial quantization, e.g., by using Cauchy

integrals in Sect. 9.2, for instance

L−n(z) =
1

2πi

∮
T (ζ )

(ζ − z)n+1 dζ .

4. To construct interesting examples of conformal field theories satisfying Axioms
1–6 it is reasonable to begin with string theory. On a more algebraic level this
amounts to study Kac–Moody algebras (cf. pp. 65 and 196). This subject is sur-
veyed, e.g., in [Uen95] where an interesting connection with the presentation of
conformal blocks as sections in certain holomorphic vector bundles is described
(cf. also [TUY89] or [BF01*]). For other examples, see [FFK89].

9.4 Other Approaches to Axiomatization

In order to lay down the foundations of conformal field theory introduced in
[BPZ84], Moore and Seiberg proposed the following axioms for a conformal field
theory in [MS89]:



References 169

A conformal field theory is a Virasoro module

V =
⊕

i∈B1

W (ci,hi)⊗W (ci,hi)

with unitary highest-weight modules W (ci,hi), W (ci,hi) (cf. Sect. 6), subject to the
following axioms:

P 1. There is a uniquely determined vacuum vector Ω = |0〉 ∈ V with Ω ∈
W (ci0 ,hi0)⊗W (ci0 ,hi0), hi0 = hi0 = 0. Ω is SL(2,C)×SL(2,C)-invariant.

P 2. To each vector α ∈ V there corresponds a field Φα , i.e. an operator Φα(z)
on V , z ∈ C. Moreover, there exists a conjugate Φα ′ such that the OPE of ΦαΦα ′
contains a descendant of the unit operator.

P 3. The highest-weight vectors α = i = vi of W (ci,hi) determine primary fields
Φi. Similarly for the highest-weight vectors of W (ci,hi).

P 4. Gi(z) = 〈Ω|Φi1(z1) . . .Φin(zn)|Ω〉, |z1|> .. . > |zn|, always has an analytical
continuation to Mn.

P 5. The correlation functions and the one-loop partition functions are modular
invariant (cf. [MS89]).

Another axiomatic description of conformal field theory was proposed by Segal
in [Seg91], [Seg88b], [Seg88a]. The basic object in this ansatz is the set of equiv-
alence classes of Riemann surfaces with boundaries, which becomes a semi-group
by defining the product of two such Riemann surfaces by a suitable fusion or sewing
(cf. Sect. 6.5).

Friedan and Shenker introduced in [FS87] a different, interesting system of ax-
ioms, which also uses the collection of all Riemann surfaces as a starting point.

All these approaches can be formulated in the language of vertex algebras which
seems to be the right theory to describe conformal field theory. In the next chapter
we present a short introduction to vertex algebras and their relation to conformal
field theory.

Along these lines, the course of V. Kac [Kac98*] describes the structure of con-
formal field theories as well as the book of E. Frenkel and D. Ben-Zvi [BF01*].
A more general point of view is taken by Beilinson and Drinfeld in their work on
chiral algebras [BD04*] where the theory of vertex algebras turns out to be a special
case of a much wider theory of chiral algebras.

A comprehensive account of different developments in conformal field theory is
collected in the Princeton notes on strings and quantum field theory of Deligne and
others [Del99*].
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Chapter 10
Vertex Algebras

In this chapter we give a brief introduction to the basic concepts of vertex algebras.
Vertex operators have been introduced long ago in string theory in order to describe
propagation of string states. The mathematical concept of a vertex (operator) al-
gebra has been introduced later by Borcherds [Bor86*], and it has turned out to be
extremely useful in various areas of mathematics. Conformal field theory can be for-
mulated and analyzed efficiently in terms of the theory of vertex algebras because
of the fact that the associativity of the operator product expansion of conformal field
theory is already encoded in the associativity of a vertex algebra and also because
many formal manipulations in conformal field theory which are not always easy to
justify become more accessible and true assertions for vertex algebras. As a result,
vertex algebra theory has become a standard way to formulate conformal field the-
ory, and therefore cannot be neglected in an introductory course on conformal field
theory.

In a certain way, vertex operators are the algebraic counterparts of field operators
investigated in Chap. 8 and the defining properties for a vertex algebra have much in
common with the axioms for a quantum field theory in the sense of Wightman and
Osterwalder–Schrader. This has been indicated by Kac in [Kac98*] in some detail.

The introduction to vertex algebras in this chapter intends to be self-contained
including essentially all proofs. Therefore, we cannot present much more than the
basic notions and results together with few examples.

We start with the notion of a formal distribution and familiarize the reader with
basic properties of formal series which are fundamental in understanding vertex al-
gebras. Next we study locality and normal ordering as well as fields in the setting of
formal distributions and we see how well these concepts from physics are described
even before the concept of a vertex algebra has been introduced. In particular, an
elementary way of operator expansion can be studied directly after knowing the
concept of normal ordering. After the definition of a vertex algebra we are inter-
ested in describing some examples in detail which have in parts appeared already at
several places in the notes (like the Heisenberg algebra or the Virasoro algebra) but,
of course, in a different formulation. In this context conformal vertex algebras are
introduced which appear to be the right objects in conformal field theory. Finally,
the associativity of the operator product expansion is proven in detail. We conclude
this chapter with a section on induced representation of Lie algebras because they

Schottenloher, M.: Vertex Algebras. Lect. Notes Phys. 759, 171–212 (2008)
DOI 10.1007/978-3-540-68628-6 11 c© Springer-Verlag Berlin Heidelberg 2008
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have been used implicitly throughout the notes and show a common feature in many
of our constructions.

The presentation in these notes is based mainly on the course [Kac98*] and to
some extent also on the beginning sections of the book [BF01*]. Furthermore, we
have consulted other texts like, e.g., [Bor86*], [FLM88*], [FKRW95*], [Hua97*],
[Bor00*], and [BD04*].

10.1 Formal Distributions

Let Z = {z1, . . . ,zn} be a set of indeterminates and let R be a vector space over C. A
formal distribution is a formal series

A(z1, . . . ,zn) = ∑
j∈Zn

A jz
j = ∑

j∈Zn

A j1,..., jn z j1
1 . . .z jn

n

with coefficients A j ∈ R. The vector space of formal distributions will be denoted
by R[[z±1 , . . . ,z±n ]] = R

[[
z1, . . . ,zn,z

−1
1 . . . ,z−1

n

]]
or R [[Z±]] for short. It contains the

subspace of Laurent polynomials

R[z±1 , . . . ,z±n ] = {A ∈ R[[z±1 , . . . ,z±n ]]|
∃k, l : A j = 0 except for k ≤ j ≤ l}.

Here, the partial order on Z
n is defined by i≤ j :⇐⇒ iν ≤ jν for all ν = 1, . . . ,n.

R[[z±1 , . . . ,z±n ]] also contains the subspace

R [[z1, . . . ,zn]] := {A : A = ∑
j∈Nn

A j1,..., jn z j1
1 . . .z jn

n }

of formal power series (here N = {0,1,2, . . .}). The space of formal Laurent series
will be defined only in one variable

R((z)) = {A ∈ R
[[

z±
]]
|∃k ∈ Z ∀ j ∈ Z : j < k ⇒ A j = 0}.

When R is an algebra over C, the usual Cauchy product for power series

AB(z) = A(z)B(z) := ∑
j∈Zn

(

∑
i+k= j

AiBk

)

z j

is not defined for all formal distributions. However, given A,B∈R [[Z±]], the product
is well-defined whenever A and B are formal Laurent series or when B is a Laurent
polynomial. Moreover, the product A(z)B(w) ∈ R [[Z±,W±]] is well-defined.

In case of R = C, the ring of formal Laurent series C((z)) is a field and this
field can be identified with the field of fractions of the ring C [[z]] of formal power
series in z. In several variables we define C((z1, . . . ,zn)) to be the field of fractions
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of the ring C [[z1, . . . ,zn]]. This field cannot be identified directly with a field of
suitable series. For example, C((z,w)) contains f = (z−w)−1, but the following
two possible expansions of f ,

1
z ∑n≥0

z−nwn = ∑
n≥0

z−n−1wn , −w∑
n≥0

znw−n =−∑
n≥0

znw−n−1,

give no sense as elements of C((z,w)). Furthermore, these two series represent two
different elements in C [[z±,w±]]. This fact and its precise description are an essen-
tial ingredient of vertex operator theory. We come back to these two expansions in
Remark 10.16.

Definition 10.1. In the case of one variable z = z1 the residue of a formal distribution
A ∈ R [[z±]], A(z) = ∑

j∈Z

A jz j, is defined to be

ReszA(z) = A−1 ∈ R.

The formal derivative ∂ = ∂z : R [[z±]]→ R [[z±]] is given by

∂

(

∑
j∈Z

A jz
j

)

= ∑
j∈Z

( j +1)A j+1z j.

One gets immediately the formulas

ReszA(z)B(z) = ∑
k∈Z

AkB−k−1,

Resz∂A(z)B(z) =−ReszA(z)∂B(z) = ∑
k∈Z

kAkB−k

provided the product AB is defined. The following observation explains the name
“formal distribution”:

Lemma 10.2. Every A ∈ R [[z±]] acts on C[z±] as a linear map

Â : C[z±]→ R,

given by Â
(

f (z)
)

:= ReszA(z) f (z),φ ∈ C[z±], thereby providing an isomorphism
R [[z±]]→ Hom(C[z±],R).

Proof. Of course, Â ∈ Hom(C[z±],R), and the map A �→ Â is well-defined and
linear. Due to Â( f ) = ∑

j∈Z

A j f−( j+1) for f = ∑ f jz j it is injective. Moreover, any

μ ∈ Hom(C[z±],R) defines coefficients A j := μ(z− j−1) ∈ R, and the distribution
A := ∑A jz j satisfies Â(z− j−1) = A j = μ(z− j−1). Hence, Â = μ and the map A �→ Â
is surjective. �

This lemma shows that Laurent polynomials f ∈ C[z±] can be viewed as to be
test functions on which the distributions A ∈ R [[z±]] act.
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Definition 10.3. The formal delta function is the formal distribution δ ∈C [[z±,w±]]
in the two variables z,w with coefficients in C given by

δ (z−w) = ∑
n∈Z

zn−1w−n = ∑
n∈Z

znw−n−1 = ∑
n∈Z

z−n−1wn.

Note that δ is the difference of the two above-mentioned expansions of (z−w)−1:

δ (z−w) = ∑
n≥0

z−n−1wn−
(

−∑
n≥0

znw−n−1

)

.

We have
δ (z−w)= ∑

k+n+1=0

zkwn =δ (w− z)

and
δ (z−w)=∑Dknzkwn ∈ C

[[
z±,w±
]]

with coefficients Dkn = δk,−n−1. Hence, for all f ∈ R [[z±]], the product f (z)δ (z−
w) is well-defined and can be regarded as a distribution in R [[w±]]) [[z±]]. From the
formula

f (z)δ (z−w) = ∑
n,k∈Z

fkzk−n−1wn = ∑
k∈Z

(

∑
n∈Z

fk+n+1wn

)

zk

for f = ∑ fkzk one can directly read off

Lemma 10.4. For every f ∈ R [[z±]]

Resz f (z)δ (z−w) = f (w)

and
f (z)δ (z−w) = f (w)δ (z−w).

The last formula implies the first of the following related identities. We use the
following convenient abbreviation

D j
w :=

1
j!
∂ j

w

during the rest of this chapter.

Lemma 10.5.

1. (z−w)δ (z−w) = 0,
2. (z−w)Dk+1δ (z−w) = Dkδ (z−w) f or k ∈ N,
3. (z−w)nD jδ (z−w) = D j−nδ (z−w) f or j,n ∈ N,n≤ j,
4. (z−w)nDnδ (z−w) = δ (z−w) f or n ∈ N,
5. (z−w)n+1Dnδ (z−w) = 0 f or n ∈ N, and therefore

(z−w)n+m+1Dnδ (z−w) = 0 f or n,m ∈ N.
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Proof. 3 and 4 follow from 2, and 5 is a direct consequence of 4 and 1. Hence, it
only remains to show 2. One uses δ (z−w) = ∑

m∈Z

z−m−1wm to obtain the expansion

∂ k+1
w δ (z−w) = ∑

m∈Z

m . . .(m− k)z−m−1wm−k−1, and one gets

(z−w)∂ k+1
w δ (z−w) = ∑

m∈Z

m . . .(m− k)(z−mwm−k−1− z−m−1wm−k)

= ∑
m∈Z

((m+1)m . . .(m− k +1))− (m . . .(m− k))z−m−1wm−k

= (k +1) ∑
m∈Z

m . . .(m− k +1)z−m−1wm−k = (k +1)∂ k
wδ (z−w),

which is property 2 of the Lemma. �
As a consequence, for every N ∈ N,N > 0, the distribution (z−w)N annihilates

all linear combinations of ∂ k
wδ (z−w), k = 0, . . . ,N−1, with coefficients in R [[w±]].

The next result (due to Kac [Kac98*]) states that these linear combinations already
exhaust the subspace of R [[z±,w±]] annihilated by (z−w)N .

Proposition 10.6. For a fixed N ∈ N, N > 0, each

f ∈ R
[[

z±,w±
]]

with (z−w)N f = 0

can be written uniquely as a sum

f (z,w) =
N−1

∑
j=0

c j(w)D j
wδ (z−w) , c j ∈ R

[[
w±
]]

.

Moreover, for such f the formula

cn(w) = Resz(z−w)n f (z,w)

holds for 0≤ n < N.

Proof. We have stated already that each such sum is annihilated by (z−w)N accord-
ing to the last identity of Lemma (10.5).

The converse will be proven by induction. In the case N = 1 the condition
(z−w) f (z,w) = 0 for f (z,w) = ∑ fnmznwm ∈ R [[z±,w±]] implies

0 =∑ fnmzn+1wm− fnmznwm+1 =∑( fn,m+1− fn+1,m)zn+1wm+1,

and therefore fn,m+1 = fn+1,m for all n,m ∈ Z. As a consequence, f0,m+1 = f1,m =
fk,m−k−1 for all m,k ∈ Z which implies

f = ∑
m,k∈Z

fk,m−k−1zkwm−k−1 = ∑
m∈Z

f1,mwm ∑
k∈Z

zkw−k−1 = c0(w)δ (z−w)

with c0(w) = ∑ f1,mwm. This concludes the proof for N = 1.
For a general N ∈ N,N > 0, let f satisfy
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0 = (z−w)N+1 f (z,w) = (z−w)N(z−w) f (z,w).

The induction hypothesis gives

(z−w) f (z,w) =
N−1

∑
j=0

d j(w)D jδ (z−w),

hence, by differentiating with respect to z

f +(z−w)∂z f =
N−1

∑
j=0

d j(w)∂zD
jδ (z−w) =−

N−1

∑
j=0

d j(w)( j +1)D j+1δ (z−w).

Here, we use ∂zδ (z−w) = −∂wδ (z−w). Now, applying the induction hypothesis
once more to

∂z((z−w)N+1 f ) = (z−w)N((N +1) f +(z−w)∂z f ) = 0

we obtain

(N +1) f +(z−w)∂z f =
N−1

∑
j=0

e j(w)D jδ (z−w).

By subtracting the two relevant equations we arrive at

N f =
N−1

∑
j=0

e j(w)D j
wδ (z−w)+

N

∑
j=1

jd j−1(w)D jδ (z−w),

and get

f (z,w) =
N

∑
j=0

c j(w)D jδ (z−w)

for suitable c j(w) ∈ R [[w±]].
The uniqueness of this representation of f follows from the formula cn(w) =

Resz(z−w)n f (z,w) which in turn follows from

(z−w)n f (z,w) = cn(w) f (z,w),0≤ n≤ N−1, if f (z,w) =
N−1

∑
j=0

c j(w)D jδ (z,w)

by applying Lemma 10.4. Finally, the identities (z−w)n f (z,w) = cn(w) f (z,w) are
immediate consequences of

(z−w)nD j
wδ (z−w) = 0 for n > j

and
(z−w)nD j

wδ (z−w) = D j−nδ (z−w)

for n≤ j (cf. Lemma 10.5). �
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Analytic Aspects. For a rational function F(z,w) in two complex variables z,w with
poles only at z = 0,w = 0, or |z|= |w| one denotes the power series expansion of F
in the domain {|z|> |w|} by ız,wF and correspondingly the power series expansion
of F in the domain {|z|< |w|} by ıw,zF . For example,

ız,w
1

(z−w) j+1 =
∞

∑
m=0

(
m
j

)
z−m−1wm− j,

ıw,z
1

(z−w) j+1 = −
∞

∑
m=1

(
−m

j

)
zm−1w−m− j.

In particular, as formal distributions

ız,w
1

(z−w)
− ıw,z

1
(z−w)

= ∑
m≥0

z−m−1wm + ∑
m>0

zm−1w−m

= ∑
m∈Z

z−m−1wm = δ (z−w) (10.1)

and similarly for the derivatives of δ ,

D jδ (z−w) = ız,w
1

(z−w) j+1 − ıw,z
1

(z−w) j+1 =∑
(

m
j

)
z−m−1wm− j.

10.2 Locality and Normal Ordering

Let R be an associative C-algebra. On R one has automatically the commutator
[S,T ] = ST −T S, for S,T ∈ R.

Definition 10.7 (Locality). Two formal distributions A,B ∈ R [[z±]] are local with
respect to each other if there exists N ∈ N such that

(z−w)N [A(z),B(w)] = 0

in R [[z±,w±]].

Remark 10.8. Differentiating (z−w)N [A(z),B(w)] = 0 and multiplying by (z−w)
yields (z−w)N+1[∂A(z),B(w)] = 0. Hence, if A and B are mutually local, ∂A and B
are mutually local as well.

In order to formulate equivalent conditions of locality we introduce some no-
tations. For A = ∑Amzm we mostly write A = ∑A(n)z

−n−1 such that we have the
following convenient formula:

A(n) = A−n−1 = ReszA(z)zn.

We break A into

A(z)− := ∑
n≥0

A(n)z
−n−1 , A(z)+ := ∑

n<0
A(n)z

−n−1.
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This decomposition has the property

(∂A(z))± = ∂ (A(z)±),

and conversely, this property determines this decomposition.

Definition 10.9. The normally ordered product for distributions A,B∈R [[z±]] is the
distribution

:A(z)B(w): := A(z)+B(w)+B(w)A(z)− ∈ R
[[

z±,w±
]]

.

Equivalently,

:A(z)B(w): = ∑
n∈Z

(

∑
m<0

A(m)B(n)z
−m−1 + ∑

m≥0
B(n)A(m)z

−m−1

)

w−n−1,

and the definition leads to the formulas

A(z)B(w) = +[A(z)−,B(w)]+ :A(z)B(w): ,

B(w)A(z) = −[A(z)+,B(w)]+ :A(z)B(w): .

With this new notation the result of Proposition 10.6 can be restated as follows.

Theorem 10.10. The following properties are equivalent for A,B ∈ R [[z±]] and
N ∈ N:

1. A,B are mutually local with (z−w)N [A(z),B(w)] = 0.

2. [A(z),B(w)] =
N−1
∑
j=0

C j(w)D jδ (z−w) for suitable C j ∈ R [[w±]].

3. [A(z)−,B(w)] =
N−1
∑
j=0

ız,w 1
(z−w) j+1 C j(w),

−[A(z)+,B(w)] =
N−1
∑
j=0

ıw,z
1

(z−w) j+1 C j(w)

for suitable C j ∈ R [[w±]].

4. A(z)B(w) =
N−1
∑
j=0

ız,w 1
(z−w) j+1 C j(w)+ :A(z)B(w): ,

B(w)A(z) =
N−1
∑
j=0

ıw,z
1

(z−w) j+1 C j(w)+ :A(z)B(w):

for suitable C j ∈ R [[w±]].

5. [A(m),B(n)] =
N−1
∑
j=1

(m
j

)
C j

(m+n− j), m,n ∈ Z, for suitable C j = ∑
k∈Z

C j
(k)w

−k−1

∈ R [[w±]].
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The notation of physicists for the first equation in 4 is

A(z)B(w) =
N−1

∑
j=0

C j(w)
(z−w) j+1 + :A(z)B(w):

with the implicit assumption of |z|> |w| in order to justify

1
(z−w) j+1 = ız,w

1
(z−w) j+1 .

Another frequently used notation for this circumstance by restricting to the singular
part is

A(z)B(w)∼
N−1

∑
j=0

C j(w)
(z−w) j+1 .

Here, ∼ denotes as before (Sect. 9.2, in particular (9.5)) the asymptotic expansion
neglecting the regular part of the series. This is a kind of operator product expansion
as in Sect. 9.3, in particular (9.13).

As an example for the operator product expansion in the context of formal dis-
tributions and vertex operators, let us consider the Heisenberg algebra H and its
generators an,Z ∈ H, with the relations (cf. (4.1) in Sect. 4.1)

[am,an] = mδm+nZ , [am,Z] = 0

for m,n∈Z. Let U(H) denote the universal enveloping algebra (cf. Definition 10.45)
of H. Then A(z) = ∑

n∈Z

anz−n−1 defines a formal distribution a ∈ U(H) [[z±]]. It is

easy to see that
[A(z),A(w)] = ∂δ (z−w)Z,

since

∑
m,n∈Z

[am,an]z−m−1w−n−1 = ∑
m∈Z

mz−m−1wm−1Z.

As a result, the distribution A is local with respect to itself. Because of C1(w) = Z
and C j(w) = 0 for j �= 1 in the expansion of A(z)A(w) according to 4 in Lemma 10.5
the operator product expansion has the form

A(z)A(w)∼ Z
(z−w)2 .

Another example of a typical operator product expansion which is of particular
importance in the context of conformal field theory can be derived by replacing the
Heisenberg algebra H in the above consideration with the Virasoro algebra Vir. As
we know, Vir is generated by Ln,n ∈ Z, and the central element Z with the relations

[Lm,Ln] = (m−n)Lm+n +
m
12

(m2−1)δm+nZ , [am,Z] = 0,
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for m,n ∈ Z. We consider any representation of Vir in a vector space V with Ln ∈
End V and Z = cidV . Then

T (z) = ∑
n∈Z

Lnz−n−2

defines a formal distribution (with coefficients in End V ). A direct calculation (see
below) shows

[T (z),T (w)] =
Z
12
∂ 3δ (z−w)+2T (w)∂wδ (z−w)+∂wT (w)δ (z−w)

and, therefore, according to our Theorem 10.5 with N = 4 the following OPE holds
(observe the factor 3! = 6 in the first equation of property 4 of the theorem):

T (z)T (w)∼ c
2

1
(z−w)4 +

2T (w)
(z−w)2 +

∂wT (w)
(z−w)

, (10.2)

which we have encountered already in (9.5).
In order to complete the derivation of this result let us check the identity for

[T (z),T (w)] stated above:

[T (z),T (w)] =∑
m,n

[Lm,Ln]z−m−2w−n−2

=∑
m,n

(m−n)Lm+nz−m−2w−n−2 +∑
m

m
12

(m2−1)z−m−2wm−2Z.

Substituting k = m+n in the first term and then l = m+1 we obtain

∑
m,n

(m−n)Lm+nz−m−2w−n−2

=∑
k,m

(2m− k)Lkz−m−2w−k+m−2

=∑
k,l

(2l− k−2)Lkz−l−1w−k+l−3

= 2∑
k,l

Lkw−k−2lz−l−1wl−1 +∑
k,l

(−k−2)Lkw−k−3z−l−1wl

= 2T (w)∂wδ (z−w)+∂wT (w)δ (z−w).

The second term is (substituting m+1 = n)

Z
12∑n

n(n−1)(n−2)z−n−1wn−3 =
Z
12
∂ 3

wδ (z−w).

Note that the expansion (10.2) can also be derived by using property 5 in
Lemma 10.5 by explicitly determining the related C j

(n) to obtain C j(w).
Without proof we state the following result:
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Lemma 10.11 (Dong’s Lemma). Assume A(z),B(z),C(z) are distributions which
are pairwise local to each other, than the normally ordered product :A(z)B(z): is
local with respect to C(z) as well.

10.3 Fields and Locality

From now on we restrict our consideration to the case of the endomorphism al-
gebra R = EndV of a complex vector space consisting of the linear operators
b : V →V defined on all of V . The value b(v) of b at v ∈V is written b(v) = b.v or
simply bv.

Definition 10.12. A formal distribution

a ∈ EndV
[[

z±
]]

,a =∑a(n)z
−n−1,

is called a field if for every v ∈ V there exists n0 ∈ N such that for all n ≥ n0 the
condition

a(n)(v) = a(n).v = a(n)v = 0

is satisfied.

Equivalently, a(z).v =∑(a(n).v)z−n−1 is a formal Laurent series with coefficients
in V , that is a(z).v ∈ V ((z)). We denote the vector space of fields by F (V ). As a
general rule, fields will be written in small letters a,b, . . . in these notes whereas
A,B, . . . are general formal distributions.

We come back to the example given by the Heisenberg algebra and replace
the universal enveloping algebra by the Fock space S = C[T1,T2, . . .] (cf. (7.12) in
Sect. 7.2) in order to have the coefficients in the endomorphism algebra End S and
also to relate the example with our previous considerations concerning quantized
fields in Sect. 7.2. Hence, we define

Φ(z) := ∑
n∈Z

anz−n−1,

where now the an : S → S are given by the representing endomorphisms an =
ρ(an) ∈ End S: For a polynomial P ∈ S and n ∈ N,n > 0, we have

an(P) =
∂
∂Tn

P,

a0(P) = 0,

a−n(P) = nTnP,

Z(P) = P.

The calculation above shows that Φ is local with respect to itself, and it satisfies
the operator product expansion
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Φ(z)Φ(w)∼ 1
(z−w)2

with the understanding that a scalar λ ∈C (here λ = 1) as an operator is the operator
λ idS. Moreover, Φ is a field: Each polynomial P ∈ S depends on finitely many
variables Tn, for example on T1, . . . ,Tk and, hence, anP = 0 for n > k. Consequently,

Φ(z)P = ∑
n∈Z

an(P)z−n−1 = ∑
n≤k

an(P)z−n−1 = ∑
m≥−k−1

a−m−1(P)zm

is a Laurent series. The field Φ is the quantized field of the infinite set of harmonic
oscillators (cf. Sect. 7.2) and thus represents the quantized field of a free boson.

In many important cases the vector space V has a natural Z-grading

V =
⊕

n∈Z

Vn

with Vn = {0} for n < 0 and dimVn < ∞. An endomorphism T ∈ End V is called
homogeneous of degree g if T (Vn)⊂Vn+g. A formal distribution a = ∑a(n)z

−n−1 ∈
End V [[z±]] is called homogeneous of (conformal) weight h∈Z if each a(k) : V →V
is homogeneous of degree h− k− 1. In this case, for a given v ∈ Vm it follows that
a(k)v ∈Vm+h−k−1, and this implies a(k)v = 0 for m+h−k−1 < 0, that is k≥m+h.
Therefore, ∑

k≥m+h
(a(k)v)z−k−1 is a Laurent series and we have shown the following

assertion:

Lemma 10.13. Any homogeneous distribution a ∈ End V [[z±]] is a field.

In our example of the free bosonic fieldΦ∈End S [[z±]] there is a natural grading
on the Fock space S given by the degree

deg(λTn1 . . .Tnm) :=
m

∑
j=1

n j

of the homogeneous polynomials P = λTn1 . . .Tnm :

Sn := span{P : P homogeneous with deg(P) = n}

with S =
⊕

Sn, Sn = {0} for n < 0 and dimSn < ∞. Because of deg(a(k)P) =
deg(P)− k if a(k)P �= 0 (a(k) = ak in this special example) we see that a(k) is ho-
mogeneous of degree −k and the field Φ is homogeneous of weight h = 1.

Remark 10.14. The derivative ∂a of a field a ∈ F (V ) is a field and the normally
ordered product :a(z)b(z): of two fields a(z),b(z) is a field as well. Because of
∂ (a(z)±) = (∂a(z))±, the derivative ∂ : F (V ) → F (V ) acts as a derivation with
respect to the normally ordered product:

∂ (:a(z)b(z):) = :(∂a(z))b(z): + :a(z)(∂b(z)): .
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Moreover, using Dong’s Lemma 10.11 we conclude that in the case of three pairwise
mutually local fields a(z),b(z),c(z) the normally ordered product :a(z)b(z): is a
field which is local with respect to c(z). The corresponding assertion holds for the
normally ordered product of more than two fields a1(z),a2(z), . . . ,an(z) which is
defined inductively by

:a1(z) . . .an(z)an+1(z): := :a1(z) . . . :an(z)an+1(z): . . . : .

It is easy to check the following behavior of the weights of homogeneous fields.

Lemma 10.15. For a homogeneous field a of weight h the derivative ∂a has weight
h + 1, and for another homogeneous field b of weight h′ the weight of the normally
ordered product :a(z)b(z): is h+h′.

We want to formulate the locality of two fields a,b ∈F (V ) by matrix coefficients.
For any v ∈V and any linear functional μ ∈V ∗ = Hom(V,C) the evaluation

〈μ ,a(z).v〉= μ(a(z).v) =∑μ(a(n).v)z
−n−1

yields a formal Laurent series with coefficients in C, i.e., 〈μ ,a(z).v〉 ∈ C((z)). The
matrix coefficients satisfy 〈μ ,a(z)b(w).v〉 ∈ C [[z±,w±]] in any case, since they are
formal distributions. A closer inspection regarding the field condition for a and b
shows

〈μ ,a(z)b(w).v〉= ∑
n<n0

μ(a(z)b(n).v)w
−n−1 ∈ C((z))((w)) .

Similarly,
〈μ ,b(w)a(z).v〉 ∈ C((w))((z)) .

In which sense can such matrix coefficients commute? Commutativity in this
context can only mean that the equality

〈μ ,a(z)b(w).v〉= 〈μ ,b(w)a(z).v〉

holds in the intersection of C((z))((w)) and C((w))((z)). Consequently, these ma-
trix coefficients of the fields a,b to μ ,v commute if and only if the two series are ex-
pansions of one and the same element in C [[z±,w±]] [z−1,w−1]. Fields a,b ∈F (V )
whose matrix coefficients commute in this sense for all μ ,v are local to each other,
but locality for fields in general as given in Definition 10.7 is a weaker condition as
stated in the following proposition.

Before formulating the proposition we want to emphasize that it is particularly
important to be careful with equalities of series regarding the various identifications
or embeddings of spaces of series. This is already apparent with our main example,
the delta function. Observe that we have two embeddings

C((z,w)) ↪→ C((z))((w)) ,C((z,w)) ↪→ C((w))((z))

of the field of fractions C((z,w)) of C [[z,w]] induced by the natural embeddings
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C [[z,w]] ↪→ C((z))((w)) ,C [[z,w]] ↪→ C((w))((z))

and the universal property of the field of fractions C((z,w)). Moreover, the two
spaces C((z))((w)) and C((w))((z)) both have a natural embedding into
C [[z±,w±]] the full space of formal distributions in the two variables z,w. Now,
for a Laurent polynomial P(z,w)∈C[z±,w±] considered as an element in C((z,w))
the two embeddings of P agree in C [[z±,w±]]. However, this is no longer true for
general elements f ∈ C((z,w)).

Remark 10.16. For example, the element f = (z−w)−1 ∈ C((z,w)) induces the
element

δ−(z−w) = ∑
n≥0

z−n−1wn = ız,w
1

(z−w)

in C((z))((w)) and the element −δ+(z−w) in C((w))((z)) where

δ+(z−w) = ∑
n>0

w−nzn−1 = ıw,z
1

(z−w)
.

Hence their embeddings in C [[z±,w±]] do not agree; the difference δ− − δ+ is, in
fact, the delta distribution δ (z−w) = ∑

n∈Z

z−n−1wn, cf. (10.1).

If we now multiply f by z−w we obtain 1 which remains 1 after the embedding
into C [[z±,w±]]. Therefore, if we multiply δ− and−δ+ by z−w we obtain the same
element 1 in C [[z±,w±]]. We are now ready for the content of the proposition.

Proposition 10.17. Two fields a,b ∈ F (V ) are local with respect to each other if
and only if for all μ ∈ V ∗ and v ∈ V the matrix coefficients 〈μ ,a(z)b(w).v〉 and
〈μ ,b(w)a(z).v〉 are expansions of one and the same element fμ,v ∈ C [[z,w]] [z−1,
w−1,(z−w)−1)] and if the order of pole in z−w is uniformly bounded for the μ ∈
V ∗,v ∈V .

Proof. When N ∈ N is a uniform bound of the order of pole in z−w of the fμ,v

one has (z−w)N fμ,v ∈ C [[z±,w±]] [z−1,w−1] uniformly for all μ ∈ V ∗,v ∈ V . The
expansion condition implies

(z−w)N〈μ ,a(z)b(w).v〉= (z−w)N fμ,v = (z−w)N〈μ ,b(w)a(z).v〉.

Consequently, (z−w)N〈μ , [a(z),b(w)].v〉= 0, and therefore

(z−w)N [a(z),b(w)].v = 0,

and finally (z−w)N [a(z),b(w)] = 0.

Conversely, if the fields a,b are local with respect to each other, that is if they
satisfy (z−w)N [a(z),b(w)] = 0 for a suitable N ∈ N, we know already by property
4 of Theorem 10.10 that
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a(z)b(w) =
N−1

∑
j=0

ız,w
1

(z−w) j+1 c j(w)+ :a(z)b(w): ,

b(w)a(z) =
N−1

∑
j=0

ıw,z
1

(z−w) j+1 c j(w)+ :a(z)b(w):

for suitable fields c j ∈ R [[w±]] given by Resz(z−w) j[a(z),b(w)]. This shows that
〈μ ,a(z)b(w).v〉 and 〈μ ,b(w)a(z).v〉 are expansions of

N−1

∑
j=0

1
(z−w) j+1 μ(c j(w).v)+μ(:a(z)b(w):v).

�

10.4 The Concept of a Vertex Algebra

Definition 10.18. A vertex algebra is a vector space V with a distinguished vector
Ω (the vacuum vector)1, an endomorphism T ∈ End V (the infinitesimal transla-
tion operator)2, and a linear map Y : V → F (V ) to the space of fields (the vertex
operator providing the state field correspondence)

a �→ Y (a,z) = ∑
n∈Z

a(n)z
−n−1,a(n) ∈ End V,

such that the following properties are satisfied: For all a,b ∈V

Axiom V1 (Translation Covariance)

[T,Y (a,z)] = ∂Y (a,z),

Axiom V2 (Locality)

(z−w)N [Y (a,z),Y (b,w)] = 0

for a suitable N ∈ N (depending on a,b),

Axiom V3 (Vacuum)

TΩ= 0,Y (Ω,z) = idV ,Y (a,z)Ω|z=0 = a.

The last condition Y (a,z)Ω|z=0 = a is an abbreviation for a(n)Ω = 0,n ≥ 0 and
a(−1)Ω= a when Y (a,z) = ∑a(n)z

−n−1. In particular,

Y (a,z)Ω= a+ ∑
n<−1

(a(n)Ω)z−n−1 = a+∑
k>0

(a(−k−1)Ω)zk ∈V [[z]] .

1 We keep the notation Ω for the vacuum in accordance with the earlier chapters although it is
common in vertex algebra theory to denote the vacuum by |0〉.
2 Not to be mixed up with the energy–momentum tensor T (z).
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Several variants of this definition are of interest.

Remark 10.19. For example, as in the case of Wightman’s axioms (cf. Remark 8.12)
one can adopt the definition to the supercase in order to include anticommuting
fields and therefore the fermionic case. One has to assume that the vector space V is
Z/2Z-graded (i.e., a superspace) and the Locality Axiom V2 is generalized accord-
ingly by replacing the commutator with the anticommutator for fields of different
parity. Then we obtain the definition of a vertex superalgebra.

Remark 10.20. A different variant concerns additional properties of V since in
many important examples V has a natural direct sum decomposition V =

⊕∞
n=0 Vn

into finite-dimensional subspaces Vn. In addition to the above axioms one requires
Ω to be an element of V0 or even V0 = CΩ, T to be homogeneous of degree 1 and
Y (a,z) to be homogeneous of weight m for a ∈Vm. We call such a vertex algebra a
graded vertex algebra.

Remark 10.21. The notation in the axioms could be reduced, for example, the in-
finitesimal translation operator T can equivalently be described by Ta = a(−2)Ω for
all a ∈V .

Proof. In fact, the Axiom V1 reads for Y (a,z) = ∑a(n)z
−n−1:

∑[T,a(n)]z
−n−1 =∑(−n−1)a(n)z

−n−2 =∑−na(n−1)z
−n−1.

Hence, [T,a(n)] =−na(n−1). Because of TΩ= 0, this implies Ta(n)Ω=−na(n−1)Ω.
For n = −1 we conclude a(−2)Ω = Ta(−1)Ω = Ta, where a(−1)Ω = a is part of the
Vacuum Axiom V3. �

Vertex Algebras and Quantum Field Theory. To bring the new concept of a vertex
algebra into contact to the axioms of a quantum field theory as presented in the last
two chapters we observe that the postulates for a vertex algebra determine a structure
which is similar to axiomatic quantum field theory.

In fact, on the one hand a field in Chap. 8 is an operator-valued distribution

Φa : S → End V

indexed by a ∈ I with V = D a suitable common domain of definition for all the
operators Φ( f ), f ∈ S . On the other hand, a field in the sense of vertex algebra
theory is a formal series Y (a,z) ∈ End V [[z±]] , a ∈V , which acts as a map

Ŷ (a, ) : C
[[

z±
]]
→ End V

as has been shown in Lemma 10.2. This map resembles an operator-valued distribu-
tion with C [[z±]] as the space of test functions.

Locality in the sense of Chap. 9 is transferred into the locality condition in Ax-
iom V2. The OPE and its associativity is automatically fulfilled in vertex algebras
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(see Theorem 10.36 below). However, the reflection positivity or the spectrum con-
dition has no place in vertex algebra theory since we are not dealing with a Hilbert
space. Moreover, the covariance property is not easy to detect due to the absence
of an inner product except for the translation covariance in Axiom V2. Finally, the
existence of the energy–momentum tensor as a field and its properties according to
the presentation in Chap. 9 is in direct correspondence to the existence of a confor-
mal vector in the vertex algebra as described below in Definition 10.30.

Under suitable assumptions a two-dimensional conformally invariant field theory
in the sense of Chap. 9 determines a vertex algebra as is shown below (p. 190).

We begin now the study of vertex algebras with a number of consequences of
the Translation Covariance Axiom V1. Observe that it splits into the following two
conditions:

[T,Y (a,z)±] = ∂Y (a,z)±.

The significance of Axiom V1 is explained by the following:

Proposition 10.22. Any element a ∈V of a vertex algebra V satisfies

Y (a,z)Ω = ezT a,

ewTY (a,z)e−wT = Y (a,z+w),
ewTY (a,z)±e−wT = Y (a,z+w)±,

where the last equalities are in End V [[z±]] [[w]] which means that (z + w)n is re-
placed by its expansion ιz,w(z+w)n = ∑k≥0

(n
k

)
zn−kwk ∈ C [[z±]] [[w]].

For the proof we state the following technical lemma which is of great impor-
tance in the establishment of equalities.

Lemma 10.23. Let W be a vector space with an endomorphism S∈ End W. To each
element f0 ∈ W there corresponds a uniquely determined solution

f = ∑
n≥0

fnzn ∈W [[z]]

of the initial value problem

d
dz

f (z) = S f (z), f (0) = f0.

In fact, f (z) = eSz f0 = ∑ 1
n! Sn f0zn.

Proof. The differential equation means ∑(n + 1) fn+1zn = ∑S fnzn, and therefore
(n+1) fn+1 = S fn for all n≥ 0, which is equivalent to fn = 1

n! Sn f0. �

Proof. (Proposition 10.22) By the translation covariance we obtain for f (z) =
Y (a,z)Ω (∈V [[z]] by the Vacuum Axiom) the differential equation ∂ f (z) = T f (z).
Applying Lemma 10.23 to W = V and S = T yields f (z) = eT za = ezT a. This
proves the first equality. To show the second, we apply Lemma 10.23 to W =
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End V [[z±]] and S = adT . We have ∂w(ewTY (a,z)e−wT ) = [T,ewTY (a,z)e−wT ] =
adT (ewTY (a,z)e−wT ) by simply differentiating, and ∂wY (a,z+w) = [T,Y (a,z+w)]
by translation covariance. Because of Y (a,z) = Y (a,z+w)|w=0 the two solutions of
the differential equation ∂w f = (adT )( f ) have the same initial value f0 = Y (a,z) ∈
End V [[z±]] and thus agree. The last equalities follow by observing the splitting
[T,Y (a,z)±] = ∂Y (a,z)±. �

In order to describe examples the following existence result is helpful:

Theorem 10.24 (Existence). Let V be a vector space with an endomorphism T and
a distinguished vector Ω ∈V . Let (Φa)a∈I be a collection of fields

Φa(z) =∑a(k)z
−k−1 = a(z) ∈ End V

[[
z±
]]

indexed by a linear independent subset I ⊂V such that the following conditions are
satisfied for all a,b ∈ I:

1. [T,Φa(z)] = ∂Φa(z).
2. TΩ= 0 and Φa(z)Ω|z=0 = a.
3. Φa and Φb are local with respect to each other.
4. The set {a1

(−k1)a
2
(−k2) . . .a

n
(−kn)Ω : a j ∈ I,k j ∈ Z,k j > 0} of vectors along with Ω

forms a basis of V .

Then the formula

Y (a1
(−k1) . . .a

n
(−kn)Ω,z): = :Dk1−1Φa1(z) . . .Dkn−1Φan(z): (10.3)

together with Y (Ω,z) = idV defines the structure of a unique vertex algebra with
translation operator T , vacuum vector Ω, and

Y (a,z) =Φa(z) for all a ∈ I.

Proof. First of all, we note that the requirement Φa(z)Ω|z=0 = a in condition 2,
that is ∑a(n)(Ω)z−n−1|z=0 = a, implies that a = a(−1)Ω for each a ∈ I. Therefore,
Y (a,z) = Y (a(−1)Ω,z) = :D0Φa(z): =Φa(z) for a ∈ I if everything is well-defined.
According to condition 4 the fields Y (a,z) will be well-defined by formula (10.3).

To show the Translation Axiom V1 one observes that for any endomorphism
T ∈ End V the adjoint adT : F (V )→F (V ) acts as a derivation with respect to the
normal ordering:

[T, :a(z)b(z): ] = : [T,a(z)]b(z): + :a(z)[T,b(z)]: .

Moreover, adT commutes with Dk,k ∈ N. Since the derivative ∂ is a derivation
with respect to the normal ordering as well (cf. Remark 10.14) commuting with Dk,
and since adT and ∂ agree on all Φa,a∈ I, by condition 1, they agree on all repeated
normally ordered products of the fields DkΦa(z) for all a ∈ I,k ∈ N, and hence on
all Y (b,z),b ∈V, because of condition 4 and the formula (10.3).

To check the Locality Axiom V2 one observes that all the fields
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DkΦa(z), a ∈ I,k ∈ N,

are pairwise local to each other by condition 3 and Remark 10.8. As a consequence,
this property also holds for arbitrary repeated normally ordered products of the
Dkφa(z) by and Dong’s Lemma 10.11 and Remark 10.14.

Finally, the requirements of the Vacuum Axiom V3 are directly satisfied by as-
sumption 2 and the definition of Y . �

The condition of being a basis in Theorem 10.24 can be relaxed to the re-
quirement that {a1

(−k1)a
2
(−k2) . . .a

n
(−kn)Ω : a j ∈ I,k j ∈ Z,k j > 0} ∪ {Ω} spans V

(cf. [FKRW95*]). With this result one can deduce that in a vertex algebra the field
formula (10.3) holds in general.

Heisenberg Vertex Algebra. Let us apply the Existence Theorem 10.24 to de-
termine the vertex algebra of the free boson. In Sect. 10.3 right after the Defini-
tion 10.12 we have already defined the generating field

Φ(z) =∑anz−n−1

with an ∈ End S. We use the representation H → End S = C[T1,T2, . . .] of the
Heisenberg Lie algebra H in the Fock space S which describes the canonical quan-
tization of the infinite dimensional harmonic oscillator (cf. p. 114). The vacuum
vector is Ω = 1, as before, and the definition of the action of the an on S yields
immediately anΩ= 0 for n ∈ Z,n≥ 0. It follows

Φ(z)Ω= ∑
n<0

(anΩ)z−n−1 = ∑
k≥0

(a−k−1Ω)zk.

Consequently, Φ(z)Ω|z=0 = a−1Ω. Hence, to apply Theorem 10.24 we set Φa =
Φ with a := a−1Ω= T1 ∈ S and I = {a}. We know that the properties 3 and 4 of the
theorem are satisfied.

In order to determine the infinitesimal translation operator T we observe that T
has to satisfy

[T,an] =−nan−1,TΩ= 0,

by property 1 and the first condition of property 2. This is a recursion for T deter-
mining T uniquely. We can show that

T = ∑
m>0

a−m−1am. (10.4)

In fact, the endomorphism

T ′ = ∑
m>0

a−m−1am ∈ End H

is well-defined and has to agree with T since T ′Ω = 0 and T ′ satisfies the same
recursion [T ′,an] = −nan−1: If n > 0 then aman = anam and [a−m−1,an] = (−m−
1)δn−m−1 for m > 0, hence [a−m−1am,an] = [a−m−1,an]am = −(m + 1)δn−m−1am,
and therefore
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[T ′,an] = ∑
m>0

−(m+1)δn−m−1am =−nan−1.

Similarly, if n < 0 we have [am,an] = mδm+n and a−m−1an = ana−m−1 for m > 0,
hence [a−m−1am,an] = mδm+na−m−1, and therefore again [T ′,an] =−nan−1.

Now, the theorem guarantees that with the definition of the vertex operation as

Y (a,z) :=Φ(z) for a = T1 and

Y (Tk1 . . .Tkn ,z): = :Dk1−1Φ(z) . . .Dkn−1Φ(z):

for k j > 0 we have defined a vertex algebra structure on S, the vertex algebra associ-
ated to the Heisenberg algebra H. This vertex algebra will be called the Heisenberg
vertex algebra S.

In the preceding section we have introduced the natural grading of the Fock
space S =

⊕
Sn and we have seen that Φ(z) is homogeneous of degree 1. Using

Lemma 10.15 on the weight of the derivative of a homogeneous field it follows
that Dk−1Φ(z) is homogeneous of weight k for k > 0 and therefore, again using
Lemma 10.15 on the weight of a normally ordered product of homogeneous fields,
that Y (Tk1 . . .Tkn ,z) has weight k1 + . . . + kn = deg(Tn1 . . .Tkn). As a consequence,
for b ∈ Sm the vertex operator Y (b,z) is homogeneous of weight m and thus the re-
quirements of Remark 10.20 are satisfied. The Heisenberg vertex algebra is a graded
vertex algebra.

Vertex Algebras and Osterwalder–Schrader Axioms. Most of the models satis-
fying the six axioms presented in Chap. 9 can be transformed into a vertex algebra
thereby yielding a whole class of examples of vertex algebras. To sketch how this
can be done we start with a conformal field theory given by a collection of correla-
tion functions satisfying the six axioms in Chap. 9. According to the reconstruction
in Theorem 9.3 there is a collection of fields Φa defined as endomorphisms on a
common dense subspace D⊂H of a Hilbert space H with Ω ∈ D.

Among the fields Φa in the sense of Definition 9.3 we select the primary fields
(Φa)a∈B1 . We assume that the asymptotic states a :=Φa(z)Ω|z=0 ∈D exist. Without
loss of generality we can assume, furthermore that {a : a ∈ B1} is linearly indepen-
dent. Otherwise, we delete some of the fields.

The operator product expansion (Axiom 6 on p. 168) of the primary fields allows
to understand the fields Φa as fields

Φa(z) =∑a(n)z
−n−1 ∈ End D

[[
z±
]]

in the sense of vertex algebras. We define V ⊂ D to be the linear span of the set

E := {a1
(−k1)a

2
(−k2) . . .a

n
(−kn)Ω : a j ∈ B1,k j ∈ Z,k j > 0}∪{Ω}

and obtain the fields Φa,a ∈ B1, as fields in V by restriction

Φa(z) =∑a(n)z
−n−1 ∈ End V

[[
z±
]]

.
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Now, using the properties of the energy–momentum tensor T (z) =∑Lnz−n−2 we
obtain the endomorphism L−1 : V → V with the properties [L−1,Φa] = ∂Φa (the
condition of primary fields (9.6) for n =−1) and L−1Ω= 0. Moreover, the fields Φ
are mutually local according to the locality Axiom 1 on p. 155.

We have thus verified the requirements 1–3 of the Existence Theorem where L−1

has the role of the infinitesimal translation operator. If the set E ⊂ V is a basis of
V we obtain a vertex algebra V with Φa(z) = Y (a,z) according to the Existence
Theorem reflecting the properties of the original correlation functions. If D is not
linear independent we can use the above-mentioned generalization of the Existence
Theorem (cf. [FKRW95*]) to obtain the same result.

We conclude this section by explaining in which sense vertex algebras are natural
generalizations of associative and commutative algebras with unit.

Remark 10.25. The concept of a vertex algebra can be viewed to be a generalization
of the notion of an associative and commutative algebra A over C with a unit 1. For
such an algebra the map

Y : A→ End A, Y (a).b := ab for all a,b ∈ A,

is C-linear with Y (a)1 = a and Y (a)Y (b) =Y (b)Y (a). Hence, Y (a,z) =Y (a) defines
a vertex algebra A with T = 0 and Ω= 1.

Conversely, for a vertex algebra V without dependence on z, that is Y (a,z) =
Y (a), we obtain the structure of an associative and commutative algebra A with 1 in
the following way. The multiplication is given by

ab := Y (a).b, for a,b ∈ A := V.

Hence, Ω is the unit 1 of multiplication by the Vacuum Axiom. By locality
Y (a)Y (b) = Y (b)Y (a), and this implies ab = Y (a)b = Y (a)Y (b)Ω= Y (b)Y (a)Ω=
ba. Therefore, A is commutative. In the same way we obtain a(cb) = c(ab):

a(cb) = Y (a)Y (c)Y (b)Ω= Y (c)Y (a)Y (b)Ω= c(ab),

and this equality suffices to deduce associativity using commutativity: a(bc) =
a(cb) = c(ab) = (ab)c.

Another close relation to associative algebras is given by the concept of a holo-
morphic vertex algebra.

Definition 10.26. A vertex algebra is holomorphic if every Y (a,z) is a formal power
series Y (a,z) ∈ End V [[z]] without singular terms.

The next result is easy to check.

Proposition 10.27. A holomorphic vertex algebra is commutative in the sense that
for all a,b ∈ V the operators Y (a,z) and Y (b,z) commute with each other. Con-
versely, this kind of commutativity implies that the vertex algebra is holomorphic.
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For a holomorphic vertex algebra the constant term a(−1) ∈ End V in the
expansion

Y (a,z) = ∑
n<0

a(n)z
−n−1 = ∑

k≥0

a(−(k+1))z
k = a(−1) +∑

k>0

a(−(k+1))z
k

determines a multiplication by ab := a(−1)b. Now, for a,b ∈ V one has [Y (a,z),
Y (b,z)] = 0 and this equality implies a(−1)b(−1) = b(−1)a(−1). In the same way as
above after Remark 10.25 the multiplication turns out to be associative and commu-
tative with Ω as unit.

The infinitesimal translation operator T acts as a derivation. By Axiom V1
[T,a(−1))] = a(−2). Because of (Ta)(−1) = a(−2) which can be shown directly but
also follows from a more general formula proven in Proposition 10.34 we obtain

T (ab) = Ta(−1)b = a(−1)T b+(Ta)(−1)b = a(T b)+(Ta)b.

Proposition 10.28. The holomorphic vertex algebras are in one-to-one correspon-
dence to the associative and commutative unital algebras with a derivation.

Proof. Given such an algebra V with derivation T : V →V we only have to construct
a holomorphic vertex algebra in such a way that the corresponding algebra is V . We
take the vacuum Ω to be the unit 1 and define the operators Y (a,z) by

Y (a,z) := ezT a = ∑
n≥0

T na
n!

zn.

The axioms of a vertex algebra are easy to check. Moreover,

Y (a,z) = a+∑
n>0

T na
n!

zn,

hence a(−1) = a which implies that by ab = a(−1)b we get back the original algebra
multiplication. �

Note that T may be viewed as the generator of infinitesimal translations of z on
the formal additive group. Thus, holomorphic vertex algebras are associative and
commutative unital algebras with an action of the formal additive group. As a con-
sequence, general vertex algebras can be regarded to be “meromorphic” generaliza-
tions of associative and commutative unital algebras with an action of the formal
additive group. This point of view can be found in the work of Borcherds [Bor00*]
and has been used in another generalization of the notion of a vertex algebra on the
basis of Hopf algebras [Len07*].

10.5 Conformal Vertex Algebras

We begin this section by completing the example of the generating field
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L(z) =∑Lnz−n−2

associated to the Virasoro algebra for which we already derived the operator product
expansion (10.2) in Sect. 10.2:

L(z)L(w)∼ c
2

1
(z−w)4 +

2L(w)
(z−w)2 +

∂wL(w)
(z−w)

. (10.5)

(We have changed the notation from T (z) to L(z) in order not to mix up the notation
with the notation for the infinitesimal translation operator T .)

Now, we associate to Vir another example of a vertex algebra.

Virasoro Vertex Algebra. In analogy to the construction of the Heisenberg vertex
algebra in Sect. 10.4 we use a suitable representation Vc of Vir where c ∈ C is the
central charge. This is another induced representation, cf. Definition 10.49. Vc is
defined to be the vector space with basis

{vn1...nk : n1 ≥ . . .nk ≥ 2,n j ∈ N,k ∈ N}∪{Ω}

(similar to the Verma module M(c,0) in Definition 6.4 and its construction in
Lemma 6.5) together with the following action of Vir on Vc (n,n j ∈ Z,n1 ≥ . . .nk ≥
2,k ∈ N):

Z := cidVc ,

LnΩ := 0 , n≥−1 , n ∈ Z,

L0vn1...nk := (
k

∑
j=1

n j)vn1...nk ,

L−nΩ := vn,n≥ 2, and L−nvn1...nk := vnn1...nk , n≥ n1.

The remaining actions Lnv,v ∈ Vc, are determined by the Virasoro relations, for
example L−1vn = (n−1)vn+1 or Lnvn = 1

12 cn(n2−1)Ω if n > 1, in particular L2v2 =
1
2 cΩ, since

L−1vn = L−1L−nΩ= L−nL−1Ω+(−1+n)L−1−nΩ= (n−1)vn+1,

and Lnvn = LnL−nΩ= L−nLnΩ+2nL0Ω+ c
12 n(n2−1)Ω with LnΩ= L0Ω= 0. The

definition L(z) =∑Lnz−n−2 directly yields that L(z) is a field, since for every v ∈Vc

there is N such that Lnv = 0 for all n≥ N.
Observe that Vc as a vector space can be identified with the space C[T2,T3, . . .] of

polynomials in the infinitely many indeterminates Tj, j ≥ 2.
To apply Theorem 10.24 with L(z) as generating field we evaluate, first of all,

the “asymptotic state” L(z)Ω|z=0 =: a ∈ S. Because of LnΩ = 0 for n > −2 and
L−nΩ= vn for n≥ 2 we obtain

a = L(z)Ω|z=0 = ∑
m≤−2

LmΩz−m−2|z=0 = L−2Ω= v2.
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We set I = {a} = {v2} and Φa(z) := L(z) in order to agree with the notation in
Theorem 10.24.

Proposition 10.29. The field Φa(z) = L(z),a = v2, generates the structure of a ver-
tex algebra on Vc with L−1 as the infinitesimal translation operator. Vc is called the
Virasoro vertex algebra with central charge c.

Proof. Property 3 of Theorem 10.24 is satisfied, since the field Φa = L is local
with itself according to (10.5), and property 4 holds because of the definition of
Vc. As the infinitesimal translation operator T we take T := L−1, so that property
2 is satisfied as well. Finally, [L−1,L(z)] = ∂L(z) (which is [T,Φ(z)] = ∂Φ(z) )
can be checked directly: [L−1,L(z)] = ∑[L−1,Ln]z−n−2 = ∑(−1− n)Ln−1z−n−2 =
∑(−n−2)Lnz−n−3 = ∂L(z).

As a consequence,

Y (v2,z) = L(z),

Y (vn1...nk ,z) = :Dn1−2T (z) . . .Dnk−2T (z):

define the structure of a vertex algebra which will be called the Virasoro vertex
algebra with central charge c. The central charge can be recovered by L2a = 1

2 cΩ.�

Vc has the grading Vc =
⊕

VN with VN generated by the basis elements {vn1...nk :
∑n j = N} (∑n j = N = deg vn1...nk ), V0 = CΩ. The finite-dimensional vector sub-
space VN can also be described as the eigenspace of L0 with eigenvalue N: VN =
{v ∈Vc : L0v = Nv}. The translation operator T = L−1 is homogeneous of degree 1
and the generating field has weight 2 since each Ln−1 = T(n) has degree 2− n− 1.
Hence, Vc is a graded vertex algebra and L0 is the degree.

This example of a vertex algebra motivates the following definition:

Definition 10.30. (Conformal Vertex Algebra) A field L(z) = ∑Lnz−n−2 with the
operator expansion as in (10.5) will be called a Virasoro field with central charge c.

A conformal vector with central charge c is a vector ν ∈ V such that Y (ν ,z) =
∑ν(n)z

−n−1 = ∑Lνn z−n−2 is a Virasoro field with central charge c satisfying, in ad-
dition, the following two properties:

1. T = Lν−1
2. Lν0 is diagonalizable.

Finally, a conformal vertex algebra (of rank c) is a vertex algebra V with a distin-
guished conformal vector ν ∈V (with central charge c). In that case, the field Y (ν ,z)
is also called the energy–momentum tensor or energy–momentum field of the vertex
algebra V .

Examples. 1. The Virasoro vertex algebras Vc are clearly conformal vertex algebras
of rank c with conformal vector ν = v2 = L−2Ω. L(z) = Y (v2,z) is the energy–
momentum tensor.
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2. The vertex algebra associated to an axiomatic conformal field theory in the
sense of the last chapter (cf. p. 190 under the assumptions made there) has L−2Ω as
a conformal vector and T is the energy–momentum tensor.

3. The Heisenberg vertex algebra S has a one-parameter family of conformal
vectors

νλ :=
1
2

T 2
1 +λT2 , λ ∈ C.

To see this, we have to check that the field Y (νλ ,z) = ∑Lλn z−n−2 is a Virasoro
field, that T = Lλ−1, and that Lλ0 is diagonalizable.

That the Lλn satisfy the Virasoro relations and therefore determine a Virasoro
field can be checked by a direct calculation which is quite involved. We postpone
the proof because we prefer to obtain the Virasoro field condition as an application
of the associativity of the operator product expansion, which will be derived in the
next section (cf. Theorem 10.40).

The other two conditions are rather easy to verify. By the definition of the vertex
operator we have Y (T 2

1 ,z) = :Φ(z)Φ(z): and Y (T2,z) = ∂Φ(z), hence

Y (T 2
1 ,z) = ∑

k �=0
∑

n+m=k

anamz−k−2 +2∑
n>0

a−nanz−2,

where Φ(z) = ∑anz−n−1 with the generators an of the Heisenberg algebra H acting
on the Fock space S, and

Y (T2,z) =∑(−k−1)akz−k−2,

and therefore,

Y (νλ ,z) =
1
2 ∑k �=0

(

∑
n+m=k

anam−λ (k +1)ak

)

z−k−2 +∑
n>0

a−nanz−2. (10.6)

(Recall that we defined a0 to satisfy a0 = 0 in this representation of H.) Conse-
quently,

L0 = Lλ0 = ∑
n>0

a−nan

and
L−1 = Lλ−1 = ∑

n>0
a−n−1an,

and both these operators turn out to be independent of λ . Now, on the monomials

Tn1 . . .Tnk we have L0(Tn1 . . .Tnk) =
k
∑
j=1

n j = deg(Tn1 . . .Tnk) and L0 is diagonalizable

with L0v = deg(v)v = nv for v ∈Vn. Finally, we have already seen in (10.4) that the
infinitesimal translation operator is ∑

n>0
a−n−1an = L−1.

4. A fourth example of a conformal vertex algebra is given by the Sugawara
vector as a conformal vector of the vertex algebra associated to a Lie algebra g.
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(This example appears also in the context of associating a vertex algebra to a con-
formal field theory with g-symmetry in the sense of Chap. 9, but there we have
not introduced the related example of a conformal field theory corresponding to a
Kac–Moody algebra.)
At first, we have to describe the corresponding vertex algebra.

Affine Vertex Algebra. As a fourth example of applying the Existence The-
orem 10.24 to describe vertex algebras we now come to the case of a finite-
dimensional simple Lie algebra g and its associated vertex algebra Vk(g),k ∈ C,
which will be called affine vertex algebra.

In the list of examples of central extensions in Sect. 4.1 we have introduced the
affinization

ĝ = g[T,T−1]⊕CZ

of a general Lie algebra g equipped with an invariant bilinear form ( , ) as the central
extension of the loop algebra Lg = g[T±] with respect to the cocycle

Θ(am,bn) = m(a,b)δm+nZ,

where we use the abbreviation am = T ma = T m⊗a,bn = T nb for a,b∈ g and n∈Z.
The commutation relations for a,b ∈ g and m,n ∈ Z are therefore

[am,bn] = [a,b ]m+n +m(a,b)δm+nZ, [am,Z] = 0.

In the case of a finite-dimensional simple Lie algebra g any invariant bilinear
symmetric form ( , ) is unique up to a scalar (it is in fact a multiple of the Killing
form κ) and the resulting affinization of g is called the affine Kac–Moody algebra
of g where the invariant form is normalized in the following way: The Killing form
on g is κ(a,b) = tr(ad a ad b) for a,b ∈ g, where ad : g → Endg, ad a(x) = [a,x]
for x ∈ g is the adjoint representation. The normalization in question now is

(a,b) :=
1

2h∨
κ(a,b),

where h∨ is the dual Coxeter number of g (see p. 221).
As before, we need to work in a fixed representation of the Kac–Moody algebra ĝ.

Let {Jρ : ρ ∈ {1, . . . ,r}} be an ordered basis of g. Then {Jρn : 1≤ ρ ≤ r = dimg,n∈
Z}∪{Z} is a basis for ĝ.

We define the representation space Vk(g),k ∈ C, to be the complex vector space
with the basis

{vρ1...ρm
n1...nm

: n1 ≥ . . .nm ≥ 1,ρ1 ≤ . . .≤ ρm}∪{Ω},

and define the action of ĝ on V = Vk(g) by fixing the action as follows (n > 0):

Z = kidV , Jρn Ω= 0,

Jρ−nΩ= vρn , Jρ−nvρ1...ρm
n1...nm

= vρρ1...ρm
nn1...nm

,
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if n ≥ n1 and ρ ≤ ρ1. The remaining actions of the Jρn on the basis of Vk(g) are
determined by the commutation relations

[Jρm,Jσn ] = [Jρ ,Jσ ]m+n +m(Jρ ,Jσ )kδm+n.

The resulting representation is called the vacuum representation of rank k. It is
again an induced representation, cf. Sect. 10.7.

The generating fields are

Jρ(z) =∑Jρn z−n−1 ∈ End Vk(g)
[[

z±
]]

,1≤ ρ ≤ r.

In view of the commutation relations one has

Jρn vρ1...ρm
n1...nm

= 0

if n > n1. Therefore, these formal distributions are in fact fields. Because of Jρn Ω= 0
for every n ∈ Z,n≥ 0, we obtain

Jρ(z)Ω= ∑
n<0

Jρn Ωz−n−1 = ∑
m≥0

vm+1zm,

and thus Jρ(z)Ω|z=0 = vρ1 . Hence, to match the notation of the Existence Theo-
rem 10.24 we should set I = {vρ1 : 1≤ ρ ≤ r} and

Φa(z) := Jρ(z) if a = vρ1 .

Proposition 10.31. The fields Φa(z),a ∈ I, resp. Jρ(z),1≤ ρ ≤ r, generate a vertex
algebra structure on Vk(g). Vk(g) is the affine vertex algebra of rank k.

Proof. In order to check locality we calculate [Jρ(z),Jσ (w)]:

[Jρ(z),Jσ (w)] = ∑
m,n

[Jρm,Jσn ]z−m−1w−n−1

= ∑
m,n

[Jρ ,Jσ ]m+nz−m−1w−n−1 +∑
m

m(Jρ ,Jσ)kz−m−1wm−1

= ∑
l

[Jρ ,Jσ ]lw−l−1∑
m

z−m−1wm +(Jρ ,Jσ )k∑
m

mz−m−1wm−1

= [Jρ ,Jσ ](w)δ (z−w)+(Jρ ,Jσ )k∂δ (z−w).

This equality implies by Theorem 10.5 that the operator product expansion is

Jρ(z)Jσ (w)∼ [Jρ ,Jσ ](w)
z−w

+
(Jρ ,Jσ )k
(z−w)2 , (10.7)



198 10 Vertex Algebras

and that the fields Jρ(z),Jσ (z) are pairwise local with respect to each other. We thus
have established property 3 of the Existence Theorem 10.24, and by the construction
of the space Vk(g) and the definition of the action of the Jρn property 4 is satisfied
as well.

It remains to determine the infinitesimal translation operator T which will again
be defined recursively by

TΩ= 0, [T , Jρn ] =−nJρn−1.

T ∈End Vk(g) is well-defined and satisfies evidently [T,Jρ(z)] = ∂Jρ(z). Therefore,
the Existence Theorem applies yielding a vertex algebra structure given by

Y (vρ1...ρm
n1...nm

,z) = :Dn1−1Jρ1(z) . . .Dnm−1Jρm(z): .

�
In order to determine a conformal vector of the affine vertex algebra Vk(g) by

the Sugawara construction we denote the elements of the dual basis with respect to
{J1, . . .Jr} by Jρ ∈ g satisfying (Jσ ,Jρ) = δρσ . Then it can be shown that the vector

S :=
1
2

r

∑
ρ=1

Jρ,−1Jρ−1Ω ∈Vk(g)

is independent of the choice of the basis. We call

ν :=
1

k +h∨
S

the Sugawara vector.

Proposition 10.32. Assume k �= −h∨. Then the Sugawara vector ν is a conformal
vector of Vk(g) with central charge

c = c(k) =
k dimg

k +h∨
.

Proof. (sketch) Using the associativity of the OPE (see Theorem 10.36 in the next
section) one can deduce for Y (ν ,z) = L(z) = ∑Lnz−n−2 (Ln = Lνn ) the OPE

L(z)Jρ(w)∼ Jρ(w)
(z−w)2 +

∂Jρ(w)
z−w

,

and hence the following commutation relations

[Lm,Jρn ] =−nJρm+n,m,n ∈ Z,1≤ ρ ≤ r.

These relations imply L−1 = T and the diagonalizability of L0 immediately.
Moreover, Lnν = 0 for n > 2. Therefore, according to the above-mentioned criterion
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in Theorem 10.40 ν is a conformal vector of central charge c where c is determined
by L2ν = 1

2 cΩ. Finally,

L2ν =
1

2(k +h∨)
L2∑Jρ,−1Jρ−1Ω

=
1

2(k +h∨)∑Jρ,1Jρ−1Ω

=
k dimg

2(k +h∨)
Ω.

We conclude c = k dimg

k+h∨ . Details are in [Kac98*] and [BF01*]. �
Altogether, the coefficients Ln of the Virasoro field

Y (ν ,z) =
1

2(k +h∨)

r

∑
ρ=1

:Jρ(z)Jρ(z):

yield an action of the Virasoro algebra with central charge c(k) on the space Vk(g).

Many more vertex algebras are known and many of them are not constructed by
using a Lie algebra representation. It is not in the scope of this book to survey other
interesting classes of vertex algebras. Instead we refer to the course of Kac [Kac98*]
where the last third of the book is devoted to describe such vertex algebras as lattice
vertex algebras, coset constructions, W -algebras, various Z/2Z-graded (or super)
vertex algebras to include also the anticommutator in the considerations, and many
more examples.

Examples are presented in the book of Frenkel and Ben-Zvi [BF01*], too, where
the vertex algebras are related to algebraic curves. The first step in doing this is
to formulate a theory of vertex algebras being invariant against coordinate changes
z �→ w(z). This leads eventually to vertex algebra bundles and moduli spaces as well
as chiral algebras. In contrast to this local approach to algebraic curves in [Lin04*]
an attempt has been made to study “global” vertex algebras on Riemann surfaces
which turns out to be connected to Krichever–Novikov algebras.

Let us mention also the approach of Huang [Hua97*] who relates the alge-
braic approach to vertex algebras as presented here to the more geometrically
and topologically inspired description of conformal field theory of Segal [Seg88a],
[Seg91].

10.6 Associativity of the Operator Product Expansion

We begin with the uniqueness result of Goddard.

Theorem 10.33 (Uniqueness). Let V be a vertex algebra and let f ∈ End V [[z±]]
be a field which is local with respect to all fields Y (a,z), a ∈ V. Moreover, as-
sume that
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f (z)Ω= ezT b

for a suitable b ∈V . Then f (z) = Y (b,z).

Proof. By locality we have (z−w)N [ f (z),Y (a,w)] = 0, in particular,

(z−w)N f (z)Y (a,w)Ω= (z−w)NY (a,w) f (z)Ω.

We insert the assumption f (z)Ω= ezT b, and the equalities Y (a,w)Ω= ewT a and
Y (b,z)Ω= ezT b (according to Proposition 10.22), and we obtain

(z−w)N f (z)ewT a = (z−w)NY (a,w)ezT b = (z−w)NY (a,w)Y (b,z)Ω.

Since Y (a,z) and Y (b,z) are local to each other we have (for sufficiently large N)

(z−w)N f (z)ewT a = (z−w)NY (b,z)Y (a,w)Ω= (z−w)NY (b,z)ewT a.

Letting w = 0 we conclude zN f (z)a = zNY (b,z)a for all a∈V which implies f (z)a =
Y (b,z)a and hence f (z) = Y (b,z). �

The Uniqueness Theorem yields immediately the following result:

Proposition 10.34. The identity

Y (Ta,z) = ∂Y (a,z)

holds in a vertex algebra.

Proof. For f (z) = ∂Y (a,z) we have

f (z)Ω= ∑
n≥0

(n+1)a(−n−2)Ωzn

and therefore f (z)Ω|z=0 = a(−2)Ω = Ta. Using translation covariance we have
∂ ( f (z)Ω) = ∂TY (a,z)Ω = T ( f (z)Ω) and we conclude f (z)Ω = ezT Ta
by Lemma 10.23. By Theorem 10.33 it follows that f (z) = Y (Ta,z). �

In a similar way as the Uniqueness Theorem 10.33 one can prove the following:

Proposition 10.35 (Quasisymmetry). The equality

Y (a,z)b = ezTY (b,−z)a

holds in V ((z)).

Proof. Since Y (a,z),Y (b,z) are local to each other by the Locality Axiom there
exists N ∈ N with

(z−w)NY (a,z)Y (b,z)Ω= (z−w)NY (b,z)Y (a,z)Ω.
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By Y (a,z)Ω)ezT a (Proposition 10.22) and analogously for b this implies

(z−w)NY (a,z)ewT b = (z−w)NY (b,z)ezT a.

By Proposition 10.22 we also have ezTY (b,w)e−T z = Y (b,z + w), hence, ezTY
(b,w− z) = Y (b,z)ezT . Consequently,

(z−w)NY (a,z)ewT b = (z−w)NezTY (b,w− z)a,

where (w−z)−1 has to replaced by the expansion (w−z)−1 = ∑
n≥0

znw−n−1. Let N be

large enough such that on the right-hand side of the above formula there appear no
negative powers of (w− z). Then it becomes an equality in V ((z)) [[w]], and we can
put w = 0 again and divide by zN to obtain the desired identity of quasisymmetry.�

We now come to the associativity of the operator product expansion (OPE for
short). To motivate the result we apply Proposition 10.22 repeatedly to obtain

Y (a,z)Y (b,w)Ω= Y (a,z)ewT b = ewTY (a,z−w)b, and

ewTY (a,z−w)b = Y (Y (a,z−w)b,w)Ω,

where the last expression Y (Y (a,z−w)b,w)Ω is defined by

Y (Y (a,z−w)b,w) := ∑
n∈Z

Y (a(n)b,w)(z−w)−n−1.

One is tempted to apply the Uniqueness Theorem 10.33 to the equality

Y (a,z)Y (b,w)Ω= Y (Y (a,z−w)b,w)Ω

to deduce
Y (a,z)Y (b,w) = Y (Y (a,z−w)b,w)

which is the desired “associativity” of the OPE. However, the theorem cannot be
applied directly: we first have to make precise where the equality should hold. Ob-
serve that for b ∈ V there exists n0 such that a(n)b = 0 for n ≥ n0. Consequently,
Y (Y (a,z−w)b,w) = ∑Y (a(n)b,w)(z−w)−n−1 is a series in End V [[w±]] ((z−w)).
Replacing

(z−w)−k �→ δ k
− = (∑

n≥0
z−n−1wn)k,k > 0,

we obtain an embedding

End V
[[

w±
]]

((z−w)) ↪→ End V
[[

w±,z±
]]

.

The following equalities have to be understood as identities in End V [[w±,z±]]
using this embedding.

Theorem 10.36 (Associativity of the OPE). For any vertex algebra V the follow-
ing associativity property is satisfied:
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Y (a,z)Y (b,w) = Y (Y (a,z−w)b,w) = ∑
n∈Z

Y (a(n)b,w)(z−w)−n−1

for all a,b ∈V . More specifically,

Y (a,z)Y (b,w) = ∑
n≥0

Y (a(n)b,w)(z−w)−n−1 + :Y (a,z)Y (b,w): ,

and, equivalently,

[Y (a,z),Y (b,w)] = ∑
n≥0

Dn
wδ (z−w)Y (a(n)b,w).

Proof. We use the attempt described earlier and start with

Y (a,z)Y (b,w)Ω= ewTY (a,z−w)b = Y (Y (a,z−w)b,w)Ω,

where the last equality can be shown in a similar way as the corresponding equality
in the proof of Proposition 10.22. For arbitrary c ∈V we obtain the equality

Y (c, t)Y (a,z)Y (b,w)Ω= Y (c, t)Y (Y (a,z−w)b,w)Ω

in End [[z±,w±]]. For sufficiently large M,N ∈ Z we have by locality

(t− z)M(t−w)NY (a,z)Y (b,w)Y (c, t)Ω

= (t− z)M(t−w)NY (c, t)Y (a,z)Y (b,w)Ω

and

(t− z)M(t−w)NY (c, t)Y (Y (a,z−w)b,w)Ω

= (t− z)M(t−w)NY (Y (a,z−w)b,w)Y (c, t)Ω.

Consequently,

(t− z)M(t−w)NY (a,z)Y (b,w)Y (c, t)Ω

= (t− z)M(t−w)NY (Y (a,z−w)b,w)Y (c, t)Ω,

and by the Vacuum Axiom Y (c, t)Ω|t=0 = c we obtain

zMwNY (a,z)Y (b,w)c = zMwNY (Y (a,z−w)b,w)c,

which implies
Y (a,z)Y (b,w) = Y (Y (a,z−w)b,w).

The other two equalities follow by using the fundamental Theorem 10.5. �
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Corollary 10.37. Each of the expansion in Theorem 10.36 is equivalent to each of
the following commutation relations due to Borcherds

[a(m),b(n)] = ∑
k≥0

(
m
k

)
(a(k))(m+n−k)

or, equivalently,

[a(m),Y (b,z)] = ∑
k≥0

(
m
k

)
Y (a(k)b,z)zm−k.

We conclude that the subspace of all coefficients a(n) ∈ End V,a ∈V,n ∈ Z, is a
Lie algebra Lie V with respect to the commutator.

Another direct consequence of the associativity of the OPE is the following: Note
that a vertex subalgebra of a vertex algebra V is a vector subspace U ⊂V containing
Ω such that a(n)U ⊂U for all a ∈U and n ∈ Z. Of course, a vertex subalgebra is
itself a vertex algebra by restricting a(n) to U :

aU
(n) = a(n)|U : U →U

with vertex operators YU (a,z) = ∑aU
(n)z

−n−1.

Corollary 10.38. Let V be a vertex algebra.

1. a(0)b = 0⇐⇒ [a(0),Y (b,z)] = 0.
2. ∀k ≥ 0 : a(k)b = 0⇐⇒ [Y (a,z),Y (b,w)] = 0.
3. a(0) is a derivation V →V for each a∈V , and thus kera(0) is a vertex subalgebra

of V .
4. The centralizer of the field Y (a,z)–the subspace

C(a) = {b ∈V : [Y (a,z),Y (b,w)] = 0} ⊂V

–is a vertex subalgebra of V .
5. The fixed point set of an automorphism of V with respect to the vertex algebra

structure is vertex subalgebra.

Proof. The first two properties follow from the second equality in Corollary 10.37.
Property 3 follows from the first equality in the above Corollary 10.37 for m = 0. 4
is implied by 2, and 5 is obvious. �

Remark 10.39. Through Corollary 10.38 the associativity of the OPE provides the
possibility of obtaining new vertex algebras as subalgebras of a given vertex algebra
V which are related to some important constructions of vertex algebra in physics
and in mathematics.

1. The centralizer of a vector subspace U ⊂V

CV (U) = {b ∈V |∀a ∈U : [Y (a,z),Y (b,w)] = 0}
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is a vertex subalgebra of V by property 4 of Corollary 10.38 called the coset
model.

2. For any subset A⊂V the intersection
⋂
{kera(0) : a ∈ A}

is a vertex subalgebra by property 3 of Corollary 10.38 called a W -algebra.
3. For a subset I ⊂V the linear span of all the vectors

a1
(n1)a

2
(n2) . . .a

k
(nk
Ω,a j ∈ I,n j ∈ Z,k ∈ N,

is a vertex subalgebra of V generated by the fields Y (a,z),a ∈ I.
4. Given a group G of automorphisms of a vertex algebra, the fixed point set V G

is a vertex subalgebra of V by property 5 of Corollary 10.38 called an orbifold
model in case G is a finite group.

We finally come to the application of the associativity of the OPE to check the Vira-
soro field condition for the Heisenberg vertex algebra and the affine vertex algebras.

Theorem 10.40. For a vector ν ∈ V denote L(z) := Y (ν ,z) = ∑
n∈Z

Lnz−n−2, that is

Ln = Lνn = ν(n+1). Suppose, L(z) and c ∈ C satisfy

L−1 = T , L2ν =
c
2
Ω , Lnν = 0 for n > 2 , L0ν = 2ν .

Then L(z) is a Virasoro field with central charge c. If, in addition, L0 is diagonaliz-
able on V , then ν is a conformal vector with central charge c.

Proof. By the OPE (Theorem 10.36)

Y (ν ,z)Y (ν ,w)∼ ∑
n≥0

Y (ν(n)ν ,w)
(z−w)n+1 = ∑

n≥−1

Y (Lnν ,w)
(z−w)n+2 .

By the assumptions on Lnν we obtain

L(z)L(w)∼ 1
2

c
Y (Ω,w)
(z−w)4 +

Y (L1ν ,w)
(z−w)3 +

Y (2ν ,w)
(z−w)2 +

Y (Tν ,w)
(z−w)

.

It remains to show that the term Y (L1ν ,z) vanishes, because in that case by insert-
ing Y (Tν ,z) = ∂Y (ν ,w) (according to Corollary 10.34) and using Y (Ω,w) = idV ,
one obtains the desired expansion

L(z)L(w)∼ 1
2

c
1

(z−w)4 +
2L(w)

(z−w)2 +
∂L(w)
(z−w)

.

In order to show a(z) := Y (L1ν ,z) = 0 one interchanges z and w and obtains

L(w)L(z)∼ 1
2

c
1

(z−w)4 −
a(z)

(z−w)3 +
2L(z)

(z−w)2 −
∂L(z)
(z−w)

,
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hence, by Taylor expansion

L(w)L(z)∼ 1
2

c
1

(z−w)4 −
a(w)+Da(w)(z−w)+D2a(w)(z−w)2

(z−w)3

+2
L(w)+DL(w)(z−w)

(z−w)2 − ∂L(w)
(z−w)

.

By locality, the two expansions of L(z)L(w) and L(w)L(z) have to be equal and
this implies

a(w)
(z−w)3 = 0

and thus a(z) = 0. �
We are now in the position to apply the associativity of the OPE in order to show

that the vectors νλ resp. νk are conformal vectors in our examples of the Heisenberg
vertex algebra S resp. of the affine vertex algebra Vk(g).

We focus on the Heisenberg case since the corresponding equalities for the affine
vertex algebra have been established already on page 198. We already know that
L0 = deg and L1 = T . It remains to show that L(z) = ∑Lnz−n−2,Ln = Lνn , is a Vira-
soro field which means by Theorem 10.40 that only L2νλ = 1

2 cΩ and Lnνλ = 0 for
n≥ 3 have to be checked. By using the expansion (10.6) of Y (νλ ,z) we obtain

Ln =
1
2 ∑m∈Z

an−mam−λ (n+1)an.

Now, a2(νλ ) = 2λΩ and an−mam(νλ ) = 0 for m > 2 or m < n− 2 (because then
n−m > 2). In the case of n > 2 we have an(νλ ) = 0 and only for n = 3,n = 4
there exist m with n− 2 ≤ m ≤ 2. It follows that Lnνλ = 0 for n ≥ 5. Because of
a2a1νλ = 0 and a2a2νλ = 0 we also have L3νλ = 0 = L4νλ . For n = 2 we get
L2νλ = 1

2 a1a1(νλ ) + a2a0(νλ )− 6λ 2Ω = ( 1
2 − 6λ 2)Ω, and the central charge is

c = 1−12λ 2. �
Remark 10.41. The Fock space representations of the Virasoro algebra which we
have studied in the context of the quantization of the bosonic string on p. 116 are in
perfect analogy with the observation that the 1

2 T 2
1 +λT2 are conformal vectors. We

can show that

L−2Ω=
1
2

+2μT2

for

L−2 =
1
2

a2
−1 +∑

k>0

a−k−1ak−1,

where μ is the eigenvalue of a0 to Ω. This yields another way of construct-
ing a vertex algebra from the Heisenberg algebra using the calculations made
there.

Indeed, a2
−1Ω= T 2

1 and ∑
k>0

a−k−1ak−1Ω= a−2a0Ω= 2μT2, hence
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L−2Ω=
1
2

T 2
1 +2μT2.  !

Primary Fields. The conformal vector ν of a conformal vertex algebra V provides,
in particular, the diagonalizable endomorphism L0 : V → V . For each eigenvector
a ∈V of L0 with L0a = ha the OPE (cf. Theorem 10.36) yields

Y (ν ,z)Y (a,w)∼ ∑
n≥−1

Y (Lna,w)
(z−w)n+2 ,

and therefore begins with the following terms

Y (ν ,z)Y (a,w)∼ ∂Y (a,w)
(z−w)

+
hY (a,w)
(z−w)2 + . . . .

Here, we use L−1 = T and Y (Ta,w) = ∂Y (a,w) (according to Corollary 10.34)
and L0a = ha.

Definition 10.42 (Primary Field). A field Y (a,z) of a conformal vertex algebra V
with conformal vector ν is called primary of (conformal) weight h if there are no
other terms in the above OPE, that is

Y (ν ,z)Y (a,w)∼ ∂Y (a,w)
(z−w)

+
hY (a,w)
(z−w)2 .

Equivalently, Y (Lna,z) = 0 for all n > 0.

The following is in accordance with Definition 9.7.

Corollary 10.43. The field Y (a,z) is primary of weight h if and only if one of the
following equivalent conditions holds:

1. L0a = ha and Lna = 0 for all n > 0.

2. [Ln,Y (a,z)] = zn+1∂Y (a,z)+h(n+1)znY (a,z) for all n ∈ Z.

3. [Ln,a(m)] =
(
(h−1)n−m

)
a(m+n) for all n,m ∈ Z.

Proof. We have already stated the equivalence with 1. To show the second property
for a primary field Y (a,z) we compare

[Y (ν ,z)Ya,w)] = ∑
n∈Z

[Ln,Y (a,w)]z−n−2
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with

[Y (ν ,z)Ya,w)] = ∂Y (a,w)δ (z−w)+hY (a,w)∂δ (z−w) =

= ∑
m∈Z

(−m−1)a(m)w
−m−2 ∑

n∈Z

z−n−1wn

+h ∑
m∈Z

a(m)w
−m−1 ∑

n∈Z

nz−n−1wn−1

= ∑
m∈Z

∑
n∈Z

(−m−1+h(n+1))a(m)w
n−m−1z−n−2,

and obtain for all n ∈ Z

[Ln,Y (a,w)] = (−m−1+h(n+1))a(m)w
n−m−1

= wn+1 ∑
m∈Z

(−m−1)a(m)w
−m−2 +wnh(n+1) ∑

m∈Z

a(m)w
−m−1

= wn+1∂Y (a,w)+ znh(n+1)Y (a,z).

Hence, a primary field Y (a,z) satisfies 2, and the converse is true since the im-
plications above can be reversed.

To deduce 3 from 2 we use

[Ln,Y (a,z)] = ∑
m∈Z

[Ln,a(m)]z
−m−1

= zn+1 ∑
m∈Z

a(m)z
−m−2 + znh(n+1) ∑

m∈Z

a(m)z
−m−1

= ∑
m∈Z

(−m−n−1+h(n+1))a(m+n)z
−m−1

to obtain [Ln,a(m)] = ((h−1)(n−1)−m)a(m+n) by comparing coefficients. Hence,
2 implies 3 and vice versa. �

Correlation Functions. Let us end this short introduction to vertex algebra theory
by presenting the fundamental properties of correlation functions of a vertex algebra
which have not been discussed so far although they play an important role in the
axiomatic theory of quantum field theory and of conformal field theory as explained
in Sections 8 and 9.

Let V ∗ denote the dual of V that is the space of linear functions μ : V →C. Given
a1, . . . ,an ∈V and v ∈V we consider

〈μ ,Y (a1,z1) . . .Y (an,zn)v〉 := μ(Y (a1,z1) . . .Y (an,zn)v)

as a formal power series in C
[[

z±1 , . . . ,z±m
]]

. These series are called n-point func-
tions or correlation functions. Since v = Y (v,z)|z=0Ω it is enough to study the case
of v =Ω only.

Theorem 10.44. Let (V,Y,T,Ω) be a vertex algebra and let μ ∈ V ∗ be a linear
functional on V . For any a1, . . . ,an ∈V there exists a series
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f μa1...an
(z1, . . . ,zn) ∈ C [[z1 . . .zn]] [(zi− z j)−1, i �= j]

such that the following properties are satisfied:

1. For any permutation π of {1, . . . ,n} the correlation function

〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉

is the expansion in C
((

zπ(1)
))

. . .
((

zπ(n)
))

of f μa1...an(z1, . . . ,zn).
2. For i < j we have

f μa1...an
(z1, . . .zn) = f(Y (ai,zi−z j)a j)a1...âi...â j ...an(z1 . . . ẑi . . .z j . . .zn),

where (zi − z j)−1 has to be replaced by its expansion ∑
k≥0

z−k−1
i zk

j into positive

powers of
z j
zi

.
3. For 1≤ j ≤ n we have

∂z j f μa1...an
(z1, . . .zn) = f μa1...Ta j ...an

(z1, . . .zn).

Proof. Since Y (a,z) is a field by the defining properties of a vertex algebra we have
〈μ ,Y (a,z)v〉 ∈ C((z)) for all a,v ∈V , and by induction

〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉 ∈ C
((

zπ(1)
))

. . .
((

zπ(n)
))

.

By the Locality Axiom V2 there exist integers Ni j > 0 such that

(zi− z j)Ni j [Y (ai,zi),Y (a j,z j)] = 0.

Hence, the series

∏
i< j

(zi− z j)Ni j〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉

is independent of the permutation π . Moreover, it contains only non-negative powers
of all the variables zi,1≤ i≤ n, because of Y (a,z)Ω ∈V [[z]] (Vacuum Axiom V3).
Consequently,

∏
i< j

(zi− z j)Ni j〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉

coincides with

∏
i< j

(zi− z j)Ni j〈μ ,Y (a1,z1) . . .Y (an,zn)Ω〉 ∈ C [[z1, . . . ,zn]]

as a series in C [[z1, . . . ,zn]]. Dividing this series by ∏i< j(zi− z j)Ni j yields the series
f μa1...an ∈ C [[z1 . . .zn]] [(zi− z j)−1, i �= j] with property 1.

The second property follows directly from 1 and the associativity of the OPE
(Theorem 10.36). For example, in the case of n = 2 it has the form
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f μa1a2
(z1,z2) = f(Y (a1,z1−z2)a2)(z2)

and this equality is the same as

〈μ ,Y (a1,z1)Y (a2,z2)Ω〉= 〈μ ,Y (Y (a1,z1− z2)a2,z2)Ω〉.

The third property is a consequence of the equality Y (Ta,z) = ∂Y (a,z) proven in
Corollary 10.34. �

10.7 Induced Representations

In the course of these notes we have used Fock spaces and representation spaces for
Lie algebras which all look very similar to each other and mostly have been given as
vector spaces of polynomials. The unifying principle behind this observation is that
all these representation spaces can be understood as certain induced representations
which are mostly induced by a one-dimensional representation of a Lie subalgebra
of the Lie algebra in question. This has to do with the fact that our representation
spaces are cyclic in the sense that they can be generated by a suitable vector.

In order to describe induced representations we use the concept of a universal
enveloping algebra. For any associative algebra A let L(A) denote the Lie algebra
with A as the underlying vector space and with the commutator as the Lie bracket.

Definition 10.45. A universal enveloping algebra of a Lie algebra g is a pair (U, i)
of an associative algebra U with unit 1 and a Lie algebra homomorphism i : g →
L(U), such that the following universal property is fulfilled. For any associative
algebra A with unit 1 and any Lie algebra homomorphism j : g→ L(A) there exists
a unique algebra homomorphism h : U → A with h(1) = 1 such that h◦ i = j.

Observe that a representation of the Lie algebra g, that is a Lie algebra homo-
morphism g → L(End W ) (where End W is considered as an associative algebra)
has a natural extension to U(g) as a homomorphism of associative algebras by the
universal property. Conversely, a homomorphism U(g)→ End W of associative al-
gebras can be restricted to g in order to obtain a Lie algebra homomorphism, that
is a representation. We have shown:

Lemma 10.46. The representations g→ End W are in one-to-one correspondence
with the representations U(g)→ End W.

Lemma 10.47. To each Lie algebra there corresponds a universal enveloping alge-
bra unique up to isomorphism.

Proof. The uniqueness of such a pair (U, i) is easy to show. In order to establish the
existence let

T (W ) =
∞⊕

n=0

W⊗n
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be the tensor algebra of a vector space W , where W⊗n is n-fold tensor product of
W with itself. The tensor algebra has the universal property that every linear map
W → A into an associative algebra A with unit has a unique extension T (W ) → A
as an algebra homomorphism sending 1 to 1. Let J ⊂ T (g) be the two-sided ideal
generated by the elements of the form a⊗ b− b⊗ a− [a,b], a,b ∈ g. Let U(g) :=
T (g)/J be the quotient algebra with projection p : T (g)→U(g). The map i is then
defined by the restriction of p to g with respect to its natural embedding g⊂U(g).

To show that (U(g), i) fulfills the universal property, let A be an associative al-
gebra with unit 1 and let j : g → L(A) be a Lie algebra homomorphism. Then,
by the universal property of the tensor algebra T (g), there exists a unique al-
gebra homomorphism H : T (g) → A extending the linear map j and satisfying
H(1) = 1. Each generating element a⊗ b− b⊗ a− [a,b] of J is annihilated by H
since H(a⊗b−b⊗a) = H(a)H(b)−H(b)H(a) = j(a) j(b)− j(b) j(a) = j([a,b]) =
H([a,b]). Hence, the ideal J is contained in the kernel of H. Consequently, H has a
factorization h through p, that is there is an algebra homomorphism h : U(g)→ A
respecting the units with H = h◦ p and thus j = H|g = h◦ p|g = h◦ i. �

Neither the definition nor the above proof yields the injectivity of i. However,
using the construction of U(g) this follows from the Poincaré–Birkhoff–Witt theo-
rem which can be found in many books, e.g., [HN91]. We state one essential conse-
quence of this theorem which is of special interest regarding the various descriptions
of representation spaces.

Proposition 10.48 (Poincaré–Birkhoff–Witt). Let (ai)i∈I be an ordered basis of
the Lie algebra g. Then the elements p(ai1 ⊗ . . .⊗aim),m∈N, i1 ≤ . . .≤ im, together
with 1 form a basis of U(g).

As a consequence we obtain an isomorphism of vector spaces from the symmet-
ric algebra

S(g) :=
∞⊕

n=0

g�n −→U(g)

to U(g), where W�n is the n-fold symmetric product of a vector space, that is the
subspace of symmetric tensors in W⊗n. S(W ) can also be understood as the quotient
T (W )/S with respect to the two-sided ideal S ⊂ T (W ) generated by all elements of
the form v⊗w−w⊗v, v,w ∈W . So far S(g) is the enveloping algebra of an abelian
Lie algebra g.

Note that the symmetric algebra S(W ) can be identified with the algebra of poly-
nomials C[Ti : i ∈ I] whenever (ai)i∈I is an ordered basis of the vector space W .

Consequently, as a vector space the universal enveloping algebra U(g) of g is
isomorphic to the vector space C[Ti : i ∈ I] of polynomials:

1 �→ 1, Ti1 . . .Tim �→ p(ai1 ⊗ . . .⊗aim), m ∈ N, i1 ≤ . . .≤ im,

provides an isomorphism.
Now, let b be a Lie subalgebra of the Lie algebra g and let π : b→ End W a Lie

algebra homomorphism, that is a representation of b in the vector space W .
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Definition 10.49. The induced representation (induced by π) is given by the in-
duced g-module

Indg

b
= U(g)⊗U(b) W,

that is

Indg

b
= (U(g)⊗W )/U(g){b⊗w−1⊗π(b)w : (b,w) ∈ b×W},

where g acts by left multiplication in the first factor.

It is straightforward to check that this prescription defines a representation. In
fact, the action of a ∈ U(g) on U(g)⊗W, x⊗w �→ ax⊗w, descends to a linear
action ρ(a) ∈ End (Indg

b
) since Jπ := U(g){b⊗w−1⊗π(b)w : (b,w) ∈ b×W} is

a left ideal, in particular a(Jπ) ⊂ Jπ . In addition, ρ(a)([x⊗w]) = [ax⊗w] defines
a homomorphism a �→ ρ(a) of associative algebras, again since Jπ a left ideal in
U(g)⊗W . The restriction of ρ to g is therefore a Lie algebra homomorphism.

An elementary example is the Fock space representation of the Heisenberg alge-
bra described on p. 114. The Heisenberg algebra H is generated by an,n∈Z, and the
central element Z. The inducing representation π is defined on the abelian Lie sub-
algebra B⊂H generated by the an,n≥ 0 and Z, with W = C, and this representation
π : P→ End C∼= C is determined by

ρ(Z) = idC = 1,ρ(a0) = μ idC = μ , ρ(an) = 0 for n > 0.

Let Ω := 1⊗ 1. Then an ∈ Jpi for n > 0, since anΩ = an⊗ 1 = 1⊗π(an)1 = 0,
a0Ω= a0⊗1 = 1⊗μ = μΩ, and Z(Ω) = 1⊗π(Z) =Ω. Hence, an ∈ Jπ ,n > 0, and
a0,Z depend on Ω modulo Jπ .

Consequently, Indg

b
(C) is generated by the classes

[ai1 ⊗ . . .⊗aimΩ],m ∈ N, i1 ≤ . . .≤ im < 0,

and Ω according to Proposition 10.48. These elements remain linearly independent,
since the a−n,a−m commute with each other for m,n≥ 0, so that Indg

b
(C) is isomor-

phic to the vector space C[Tn : n > 1] with the action ρ(a−n)Ω= Tn for n > 0, and,
more generally,

ρ(a−n)P = TnP,

for any polynomial P ∈ C[Tn : n > 1]. Similarly, because of the other commutation
relations, for n > 0 we obtain ρ(an)Tm = 0 if n �= m and ρ(an)Tn = nΩ, and, more
generally, ρ(an)P = n∂Tn P. This, of course, is exactly the representation on p. 114.

The example is typical, in the cases considered in these notes, we have W = C

and an ordered basis (ai)i∈I with a division I = I+∪ I− such that ai, i ∈ I+ is a basis
of Jπ and Indg

b
(C) is isomorphic to the space of polynomials C[Tn : n ∈ I−]. The

action of the ai, i ∈ I, is then essentially determined by aiΩ = Ti if i ∈ I− and the
commutation relations of all the ai.

In this way we obtain similarly the description of a Verma module with respect to
given numbers c,h ∈C on p. 94, the representation of the string algebra on p. 119,



212 10 Vertex Algebras

the representation Vc of the Virasoro algebra Vir used for the Virasoro vertex al-
gebras on p. 193, the representation of the Kac–Moody algebras on p. 196, and in
a certain sense even the free boson representation on p. 136 where, however, the
Hilbert space structure has to be respected as well. Analogously, the fermionic Fock
space on p. 52 can be described as an induced representation. To do this, we have
to extend the consideration to the case of Lie superalgebras in order to include the
anticommutation relations.
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Chapter 11
Mathematical Aspects of the Verlinde Formula

The Verlinde formula describes the dimensions of spaces of conformal blocks
(cf. Sect. 9.3) of certain rational conformal field theories (cf. [Ver88]). With respect
to a suitable mathematical interpretation, the Verlinde formula gives the dimensions
of spaces of generalized theta functions (cf. Sect. 11.1). These dimensions and their
polynomial behavior (cf. Theorem 11.6) are of special interest in mathematics. Prior
to the appearance of the Verlinde formula, these dimensions were known for very
specific cases only, e.g., for the classical theta functions (cf. Theorem 11.5).

The Verlinde formula has been presented by E. Verlinde in [Ver88] as a result of
physics. Such a result is, of course, not a mathematical result, it will be considered
as a conjecture in mathematics. However, the physical insights leading to the state-
ment of the formula and its justification can be of great help in proving it. Several
mathematicians have worked on the problem of proving the Verlinde formula, start-
ing with [TUY89] and coming to a certain end with [Fal94]. These proofs are all
quite difficult to understand. For a recent review on general theta functions we refer
to the article [Fal08*] of Faltings.

In this last chapter of the present notes we want to explain the Verlinde formula in
the context of stable holomorphic bundles on a Riemann surface, that is as a result in
function theory or in algebraic geometry. Furthermore, we will sketch a strategy for
a proof of the Verlinde formula which uses a kind of fusion for compact Riemann
surfaces with marked points. This strategy is inspired by the physical concept of
the fusion of fields in conformal field theory as explained in the preceding chapter.
We do not explain the interesting transformation from conformal field theory to
algebraic geometry. Instead we refer to [TUY89], [Uen95], [BF01*], [Tyu03*].

11.1 The Moduli Space of Representations and Theta Functions

In the following, S is always an oriented and connected compact surface of genus
g = g(S) ∈N0 without boundary. The moduli space of representations for the group
G is

M G := Hom(π1(S),G)
/

G .

Schottenloher, M.: Mathematical Aspects of the Verlinde Formula. Lect. Notes Phys. 759,
213–233 (2008)
DOI 10.1007/978-3-540-68628-6 12 c© Springer-Verlag Berlin Heidelberg 2008
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The equivalence relation indicated by “
/

G” is the conjugation

g∼ g′ ⇐⇒ ∃h ∈ G : g = hgh−1.

Theorem 11.1. M G has a number of quite different interpretations. In the case of
G = SU(r) these interpretations can be formulated in form of the following one-to-
one correspondences (denoted by “ ∼=”):

1. M SU(r) = Hom(π1(S),SU(r))
/

SU(r) .

Topological interpretation: the set M SU(r) is a topological invariant, which
carries an amount of information which interpolates between the fundamental
group π1(S) and its abelian part

H1(S) = π1(S)
/
[π1(S),π1(S)] ,

the first homology group of S.

2. M SU(r) ∼= set of equivalence classes of flat SU(r)-bundles.

Geometric interpretation: there are two related (and eventually equivalent)
interpretations of “flat” SU(r)-bundles; “flat” in the sense of a flat vector bundle
with constant transition functions and “flat” in the sense of a vector bundle with
a flat connection (corresponding to SU(r) in both cases). Two such bundles are
called equivalent if they are isomorphic as flat bundles.

3. M SU(r) ∼= Ȟ1(S,SU(r))∼= H1(π1(S),SU(r)).

Cohomological interpretation: Ȟ1(S,SU(r)) denotes the first Čech cohomol-
ogy set with values in SU(r) (this is not a group in the non-abelian case) and
H1(π1(S),SU(r)) denotes the group cohomology of π1(S) with values in SU(r).

4. M SU(r) ∼= A0
/
G .

Interpretation as a phase space: A is the space of differentiable connections
on the trivial bundle S×SU(r)→ S, A0 ⊂A is the subspace of flat connections
and G is the corresponding gauge group of bundle automorphisms, that is

G ∼= C ∞(S,SU(r)).

A0
/
G appears as the phase space of a three-dimensional Chern–Simons the-

ory with an internal symmetry group SU(r) with respect to a suitable gauge
(cf. [Wit89]).

5. M SU(r) ∼= moduli space of semi-stable holomorphic vector bundles E on S of
rank r with detE = OS.

Complex analytical interpretation: here, one has to introduce a complex struc-
ture J on the surface S such that S equipped with J is a Riemann surface SJ. The
vector bundles in the above moduli space are holomorphic with respect to this
complex structure and the sheaf OS is the structure sheaf on SJ. To emphasize
the dependence on the complex structure J on S, we denote this moduli space by

M
SU(r)
J .
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To prove the above bijections “∼=” in the cases 2., 3., and 4. is an elementary
exercise for understanding the respective concepts. Case 5. is a classical theorem of
Narasimhan and Seshadri [NS65] and is much more involved.

In each of these cases, “∼=” is just a bijection of sets. However, the different
interpretations yield a number of different structures on M SU(r). In 1., for instance,
M SU(r) obtains the structure of a subvariety of SU(r)2g

/
SU(r) (because of the fact

that π1(S) is a group of 2g generators and one relation, cf. (11.4) below), in 4. the
set M SU(r) obtains the structure of a symplectic manifold and in 5., according to
[NS65], the structure of a Kähler manifold outside the singular points of M SU(r).

Among others, there are three important generalizations of Theorem 11.1:

• to other Lie groups G instead of SU(r),
• to higher-dimensional compact manifolds M instead of S and, in particular, to

Kähler manifolds in connection with 5.
• to S \ {P1, . . . ,Pm} instead of S with points P1, . . . ,Pm ∈ S (cf. Sect. 11.3) and a

suitable fixing of the vector bundle structure near the points P1, . . . ,Pm ∈ S.

To begin with, we do not discuss these more general aspects, but rather concen-
trate on M SU(r). The above-mentioned structures induce the following properties
on M SU(r):

• M SU(r) has a natural symplectic structure, which is induced by the following
2-form ω on the affine space

A ∼= A 1(S,su(r))

of connections:
ω(α,β ) = c

∫

S

tr(α ∧β ) (11.1)

for α,β ∈A 1(S,su(r)) with a suitable constant c ∈ R\{0}.
Here,

tr : su(r)→ R

is the trace of the complex r× r-matrices with respect to the natural representa-
tion. In what sense this defines a symplectic structure on A and on A0/G will
be explained in more detail in the following.

In fact, for a connection A ∈ A the tangent space TAA of the affine space
A can be identified with the vector space A 1(S,su(r)) of su(r)-valued differ-
entiable 1-forms. Hence, a 2-form on A is given by a family (ωA)A∈A of bi-
linear mappings ωA on A 1(S,su(r))×A 1(S,su(r)) depending differentiably on
A ∈A . Now, the map

ω : A 1(S,su(r))×A 1(S,su(r))→ C

defined by (11.1) is independent of A ∈A with respect to the natural trivializa-
tion of the cotangent bundle

T ∗A = A ×A 1(S,su(r))∗.
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Consequently, ω with (11.1) is a closed 2-form. It is nondegenerate since
ω(α,β ) = 0 for all α implies β = 0. Hence, it is a symplectic form on A defining
the symplectic structure. Moreover, it can be shown that the pushforward of ω|A0

with respect to the projection A0 → A0/G gives a symplectic form ωM on the
regular part of A0/G . Indeed, A0/G is obtained by a general Marsden–Weinstein
reduction of (A ,ω) with respect to the action of the gauge group G where the
curvature map turns out to be a moment map.

This symplectic form ωM is also induced by Chern–Simons theory
(cf. [Wit89]). A0/G with this symplectic structure is the phase space of the clas-
sical fields.

• Moreover, on M SU(r) there exists a natural line bundle L (the determinant bun-
dle) – which is uniquely determined up to isomorphism – together with a con-
nection ∇ on L whose curvature is 2πiω . With a fixed complex structure J on
S, for instance, the line bundle L has the following description:

Θ :=
{

[E] ∈M
SU(r)
J : dimC H0(S,E)≥ 1

}

is a Cartier divisor (the “theta divisor”) on M
SU(r)
J , for which the sheaf

L = LΘ = O(Θ) = sheaf of meromorphic functions f on M
SU(r)
J

with (f)+Θ≥ 0

is a locally free sheaf of rank 1. Hence, L is a complex line bundle, which
automatically is holomorphic with respect to the complex structure on the moduli
space induced by J. (H0(S,E) is the vector space of holomorphic sections on the
compact Riemann surface S = SJ with values in the holomorphic vector bundle
E and [E] denotes the equivalence class represented by E.)

Definition 11.2. The space of holomorphic sections in L k, that is

H0
(
M

SU(r)
J , L k

)
,

is the space of generalized theta functions of level k ∈ N.

Here, L k is the k-fold tensor product of L : L k = L ⊗ . . .⊗L (k-fold). Since

M
SU(r)
J is compact, H0(M SU(r)

J ,L k) is a finite-dimensional vector space over C.
In the context of geometric quantization, the space

H0
(
M

SU(r)
J , L

)

can be interpreted as the quantized state space for the phase space (M SU(r),ω),
prequantum bundle L and holomorphic polarization J. A similar result holds

for H0(M SU(r)
J ,L k). To explain this we include a short digression on geometric

quantization (cf. [Woo80] for a comprehensive introduction):
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Geometric Quantization. Geometric quantization of a classical mechanical system
proceeds as follows. The classical mechanical system is supposed to be represented
by a symplectic manifold (M,ω). For quantizing (M,ω) one needs two additional
geometric data, a prequantum bundle and a polarization. A prequantum bundle is a
complex line bundle L → M on M together with a connection ∇ whose curvature
is 2πiω . A polarization F on M is a linear subbundle F of (that is a distribution
on) the complexified tangent bundle T MC fulfilling some compatibility conditions.
An example is the bundle F spanned by all “y-directions” in M = R

2 with coor-
dinates (x,y) or on M = C

n the complex subspace of T MC spanned by the direc-
tions ∂

∂ z j
, j = 1, . . . ,n. This last example is the holomorphic polarization which has

a natural generalization to arbitrary complex manifolds M. Now the (uncorrected,
see (11.3)) state space of geometric quantization is

Z := {s ∈ Γ(M,L) : s is covariantly constant on F} .

Here, Γ(M,L) denotes the C ∞-sections on M of the line bundle L and the covari-
ance condition means that ∇X s = 0 for all local vector fields X : U → F ⊂ T MC

with values in F . In case of the holomorphic polarization the state space Z is simply
the space H0(M,L) of holomorphic sections in L.

Back to our moduli space M
SU(r)
J with symplectic form ωM , the holomorphic

line bundle L → M
SU(r)
J , and holomorphic polarization one gets the following:

for every k ∈ N, L k is a prequantum bundle of (M SU(r)
J ,kωM ). Consequently,

H0(M SU(r)
J ,L k) is the (uncorrected) state space of geometric quantization.

In order to have a proper quantum theory constructed by geometric quantization
it is necessary to develop the theory in such a way that the state space Z obtains an
inner product. By an appropriate choice of the prequantum bundle and the polariza-
tion one has to try to represent those observables one is interested in as self-adjoint
operators on the completion of Z (see [Woo80]). We are not interested in these mat-
ters and only want to point out that the space of generalized theta functions has an
interpretation as the state space of a geometric quantization scheme: The space

H0
(
M

SU(r)
J ,L k

)

is the (uncorrected) quantized state space of the phase space
(
M

SU(r)
J ,kω

)
,

for the prequantum bundle L k and for the holomorphic polarization on M
SU(r)
J .

Before continuing the investigation of the spaces of generalized theta functions
we want to mention an interesting connection of geometric quantization with repre-
sentation theory of compact Lie groups which we will use later for the description of
parabolic bundles. In fact, to a large extent, the ideas of geometric quantization de-
veloped by Kirillov, Kostant, and Souriau have their origin in representation theory.
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Let G be a compact, semi-simple Lie group with Lie algebra g and fix an invariant
nondegenerate bilinear form <,> on g by which we identify g and the dual g∗ of g.
For simplicity we assume G to be a matrix group. Then G acts on g by the adjoint
action

Adg : g→ g, X → gXg−1,

g ∈ G, and on g∗ by the coadjoint action

Ad∗g : g∗ → g∗,ξ → ξ ◦Adg,

g ∈ G. The orbits O = Gξ = {Ad∗g(ξ ) : g ∈ G} of the coadjoint action are called
coadjoint orbits. They carry a natural symplectic structure given as follows. For
A ∈ g let XA : O → TO be the Jacobi field, XA(ξ ) = d

dt (Ad∗etAξ ) |
t=0

. Then by

ωξ (XA,XB) := ξ ([A,B])

for ξ ∈ O, A,B ∈ g, we define a 2-form which is nondegenerate and closed, hence
a symplectic form.

The coadjoint orbits have another description using the isotropy group Gξ = {g∈
G : Ad∗gξ = ξ}, namely

O ∼= G/Gξ ∼= GC/B,

where GC is the complexification of G and B ⊂ GC is a suitable Borel subgroup.
In this manner O ∼= GC/B is endowed with a complex structure induced from the
complex homogeneous (flag) manifold GC/B. ω turns out to be a Kähler form with
respect to this complex structure, such that (O,ω) is eventually a Kähler manifold.
Assume now that we find a holomorphic prequantum bundle on O . Then G acts in
a natural way on the state space H0(O,L ). Based on the Borel–Weil–Bott theorem
we have the following result.

Theorem 11.3 (Kirillov [Kir76]). Geometric quantization of each coadjoint orbit of
maximal dimension endowed with a prequantum bundle yields an irreducible uni-
tary representation of G. Every irreducible unitary representation of G appears ex-
actly once amongst these (if one takes account of equivalence classes of prequantum
bundles L → O only).

To come back to our moduli spaces and spaces of holomorphic sections in line
bundles we note that a close connection of the spaces of generalized theta functions

with conformal field theory is established by the fact that H0(M SU(r)
J ,L k) is iso-

morphic to the space of conformal blocks of a suitable conformal field theory with
gauge symmetry (cf. Sect. 9.3). This is proven in [KNR94] for the more general
case of a compact simple Lie group G.

At the end of this section we want to discuss the example G = U(1) which does
not completely fit into the scheme of the groups SU(r) or groups with a simple com-
plexification. However, it has the advantage of being relatively elementary, and it ex-

plains why the elements of H0(M SU(1)
J ,L k) are called generalized theta functions:
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Example 11.4. (e.g. in [Bot91*]) Let G be the abelian group U(1) and let J be a

complex structure on the surface S. Then M
U(1)
J is isomorphic (as a set) to

1. the moduli space of holomorphic line bundles on the Riemann surface S = SJ of
degree 0.

2. the set of equivalence classes of holomorphic vector bundle structures on the
trivial C∞ vector bundle SJ ×C→ SJ .

3. Hom(π1(S),U(1))∼= Ȟ1(S,U(1))∼= H1(SJ ,O)
/

H1(S,Z) ,
which is a complex g-dimensional torus where O is the sheaf of germs of holo-
morphic functions in SJ .

4. C
g
/
Γ ∼= Jacobi variety of SJ .

Let L → M
U(1)
J be the theta bundle, given by the theta divisor on the Jacobi

variety. Then

• H0(M U(1)
J ,L )∼= C is the space of classical theta functions and

• H0(M U(1)
J ,L k) is the space of classical theta functions of level k.

Theorem 11.5. dimC H0(M U(1)
J ,L k)= kg (independently of the complex structure).

The Verlinde formula is a generalization of this dimension formula to other Lie
groups G instead of U(1). Here we will only treat the case of the Lie groups G =
SU(r).

11.2 The Verlinde Formula

Theorem 11.6 (Verlinde Formula). Let

zSU(r)
k (g) := dimC H0

(
M

SU(r)
J ,L k

)
.

Then

zSU(2)
k (g) =

(
k +2

2

)g−1 k+1

∑
j=1

(
sin2 jπ

k +2

)1−g

and (11.2)

zSU(r)
k (g) =

(
r

k + r

)g

∑
S⊂{1,...,k+r}

|S|=r

∏
s∈S,t /∈S

1≤t≤k+r

∣
∣
∣
∣2sinπ

s− t
r + k

∣
∣
∣
∣

g−1

for r ≥ 2.

The theorem (cf. [Ver88], [TUY89], [Fal94], [Sze95], [Bea96], [Bea95], [BT93],
[MS89], [NR93], [Ram94], [Sor95]) has a generalization to compact Lie groups for
which the complexification is a simple Lie group GC of one of the types A,B,C,D,
or G ([BT93], [Fal94]).



220 11 Mathematical Aspects of the Verlinde Formula

Among other aspects the Verlinde formula is remarkable because

• the expression on the right of the equation actually defines a natural number,
• it is polynomial in k, and
• the dimension does not depend on the complex structure J.

Even the transformation of the second formula into the first for r = 2 requires
some calculation. Concerning the independence of J: physical insights related to
rational conformal field theory imply that the space of conformal blocks does not
depend on the complex structure J on S. This makes the independence of the di-
mension formula of the structure J plausible. However, a mathematical proof is still
necessary.

From a physical point of view, the Verlinde formula is a consequence of the
fusion rules for the operator product expansion of the primary fields (cf. Sect. 9.3).
We will discuss the fusion mathematically in the next section. Using the fusion rules
formulated in that section, the Verlinde formula will be reduced to a combinatorical
problem, which is treated in Sect. 11.4.

There is a shift k → k + r in the Verlinde formula which also occurs in other for-
mulas on quantum theory and representation theory. This shift has to do with the
quantization of the systems in question and it is often related to a central charge
or an anomaly (cf. [BT93]). In the following we will express the shift within ge-
ometric quantization or rather metaplectic quantization. This is based on the fact

that H0(M SU(r)
J ,L k) can be obtained as the state space of geometric quantization.

Indeed, the shift has an explanation as to arise from an incomplete quantization pro-
cedure. Instead of the ordinary geometric quantization one should rather take the
metaplectic correction.

Metaplectic Quantization. In many known cases of geometric quantization, the
actual calculations give rise to results which do not agree with the usual quan-
tum mechanical models. For instance, the dimensions of eigenspaces turn out to
be wrong or shifted. This holds, in particular, for the Kepler problem (hydrogen
atom) and the harmonic oscillator. Because of this defect of the geometric quantiza-
tion occurring already in elementary examples one should consider the metaplectic
correction which in fact yields the right answer in many elementary classical sys-
tems, in particular, in the two examples mentioned above. To explain the procedure
of metaplectic correction we restrict to the case of a Kähler manifold (M,ω) with
Kähler form ω as a symplectic manifold. In this situation a metaplectic structure
on M is given by a spin structure on M which in turn is given by a square root
K

1
2 of the canonical bundle K on M. (K is the holomorphic line bundle detT ∗M

of holomorphic n-forms, when n is the complex dimension of M.) The metaplec-
tic correction means – in the situation of the holomorphic polarization – taking the
spaces

Zm = H0
(

M,L⊗K
1
2

)
(11.3)

as the state spaces replacing Z = H0(M,L).
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In the context of our space of generalized theta functions the metaplectic correc-
tion is

Zm = H0
(
M

SU(r)
J ,L k⊗K

1
2

)
,

where K is the canonical bundle of M
SU(r)
J .

Now, the canonical bundle of M
SU(r)
J turns out to be isomorphic to the dual of

L 2r, hence a natural metaplectic structure in this case is K
1
2 = L −r (:= dual of

L r). As a result of the metaplectic correction the shift disappears:

Zm = H0
(
M

SU(r)
J ,L k⊗L −r

)
= H0
(
M

SU(r)
J ,L k−r

)
.

The dimension of the corrected state space Zm is

dm,SU(r)
k (g) = dimH0

(
M

SU(r)
J ,L k⊗L −r

)

and we see
dm,SU(r)

k (g) = dSU(r)
k−r (g).

This explanation of the shift is not so accidental as it looks at first sight. A similar
shift appears for a general compact simple Lie group G. To explain the shift in this
more general context one has to observe first that r is the dual Coxeter number of
SU(r) and that the shift for general G is k → k + h∨ where h∨ is the dual Coxeter
number of G (see [Fuc92], [Kac90] for the dual Coxeter number which is the Dynkin
index of the adjoint representation of G). Now, the metaplectic correction again
explains the shift because the canonical bundle on the corresponding moduli space
M G

J is isomorphic to L −2h.
Another reason to introduce the metaplectic correction appears in the general-

ization to higher-dimensional Kähler manifolds X instead of SJ . In order to obtain
a general result on the deformation independence of the complex structure gener-
alizing the above independence result it seems that only the metaplectic correction
gives an answer at all. This has been shown in [Sche92], [ScSc95].

A different but related explanation of the shift by the dual Coxeter number of a
nature closer to mathematics uses the Riemann–Roch formula for the evaluation of
the dG

k (g) where h appears in the Todd genus of M G
J because of L −2h = K .

11.3 Fusion Rules for Surfaces with Marked Points

In this section G is a simple compact Lie group which we assume to be SU(2) quite
often for simplification.

As above, let SJ =: Σ be a surface S of genus g with a complex structure J. We
fix a level k ∈ N.
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Let P = (P1, . . . ,Pm)∈ Sm be (pairwise different) points of the surface, which will
be called the marked points. We choose a labeling R = (R1, . . . ,Rm) of the marked
points, that is, we associate to each point Pj an (equivalence class of an) irreducible
representation R j of the group G as a label.

From Theorem 11.3 of Kirillov we know that these representations R j correspond
uniquely to quantizable coadjoint orbits O j of maximal dimension in g∗. Using the
invariant bilinear form on g the O js correspond to adjoint orbits in g and these, in
turn, correspond to conjugacy classes Cj ⊂ G by exponentiation. The analogue of
the moduli space M G will be defined as

M G(P,R) :=
{
ρ ∈ Hom(π1(S\P),G) : ρ(c j) ∈Cj

}
/G.

Here, c j denotes the representative in π1(S \ P) of a small positively oriented
circle around Pj.

Note that the fundamental group π1(S \P) of S \P is isomorphic to the group
generated by

a1, . . . ,ag,b1, . . . ,bg,c1, . . . ,cm

with the relation
g

∏
j=1

a jb ja
−1
j b−1

j

m

∏
i=1

ci = 1. (11.4)

In the case of G = SU(2) the R j correspond to conjugacy classes Cj generated by

(
e2πiθ j 0

0 e−2πiθ j

)
=: g j. (11.5)

Let us suppose the θ j to be rational numbers. This condition is no restriction of
generality (see [MS80]). Hence, we obtain natural numbers Nj with g j

Nj = 1 which
describe the conjugacy classes Cj. We now define the orbifold fundamental group
πorb

1 (S) = π1(S,P,R) as the group generated by

a1, . . . ,ag,b1, . . . ,bg,c1, . . . ,cm

with the relations

g

∏
j=1

a jb ja
−1
j b−1

j

m

∏
i=1

ci = 1 and cNi
i = 1 (11.6)

for i = 1, . . . ,m, where Nj depends on θ j. Then M SU(2)(P,R) can be written as

Hom(πorb
1 (S),SU(2))/SU(2).

Theorem 11.1 has the following generalization to the case of surfaces with
marked points.

Theorem 11.7. Let S be marked by P with labeling R. The following three moduli
spaces are in one-to-one correspondence:



11.3 Fusion Rules for Surfaces with Marked Points 223

1. M SU(2)(P,R) = Hom(πorb
1 (S),SU(2))/SU(2).

2. The set of gauge equivalence classes (that is gauge orbits) of singular SU(2)-
connections, flat on S \P with holonomy around Pj fixed by the conjugacy class
Cj induced by R j, j = 1, . . . ,m.

3. The moduli space M
SU(2)
J (P,R) of semi-stable parabolic vector bundles of rank

2 with paradegree 0 and paradeterminant OS for (P,R).

We have to explain the theorem. To begin with, the moduli space of singular
connections in 2. can again be considered as a phase space of a classical system.
The classical phase space A0

/
G (cf. 4. in Theorem 11.1) is now replaced with the

quotient
M := AO

/
G .

Here, AO is the space of singular unitary connections A on the trivial vector
bundle of rank 2 over the surface S subject to the following conditions: over S \
P the curvature of A vanishes and at the marked points Pi the curvature is (up to
conjugation) locally given by

m(A) =∑Tiδ (Pi− x)

(with the Dirac δ -functional δ (Pi−x) in Pi) where Ti ∈ su(2) belongs to the adjoint
orbit determined by O j. Hence, AO can be understood as the inverse image m−1(O)
of a product O of suitable coadjoint orbits of the dual (LieG )∗ of the Lie algebra of
the gauge group G . Regarding m as a moment map, M = AO

/
G turns out to be a

generalized Marsden–Weinstein reduction.
A related interpretation of M in this context is as follows: the differentiable

SU(2)-connections A on the trivial rank 2 vector bundle over S \P define a paral-
lel transport along each closed curve γ in S \P. Hence, each A determines a group
element W (A,γ) in SU(2) up to conjugacy. If A is flat in S \P one obtains a ho-
momorphism W (A) : π1(S \P)→ SU(2) up to conjugacy (see (11.4) for π1(S \P))
since for a flat connection the parallel transport from one point to another is locally
independent of the curve connecting the points. Now, the labels R j at the marked
points Pj fix the conjugacy classes Cj assigned by W (A) to the simple circles (rep-
resented by c j in the description (11.4) of the fundamental group π1(S \P)) around
the marked points: W (A)(c j) has to be contained in Cj. Hence, the elements of M

define conjugacy classes of representations in M SU(2)(P,R) yielding a bijection.
This explains the first bijection of the theorem. The second bijection has been

shown by Mehta and Seshadri [MS80] as a generalization of the theorem of
Narasimhan and Seshadri [NS65] (cf. Theorem 11.1). To understand it, we need
the following concepts:

Definition 11.8. A parabolic structure on a holomorphic vector bundle E of rank r
over a marked Riemann surface Σ = SJ with points P1, . . . ,Pm ∈ Σ is given by the
following data:
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• a flag of proper subspaces in every fiber Ei of E over Pi:

Ei = F(0)
i ⊃ ·· · ⊃ F(ri)

i ⊃ {0}

with k(s)
i := dimF(s)

i

/
F(s+1)

i as multiplicities, and

• a sequence of weights α(s)
i corresponding to every flag with

0≤ α(0)
i ≤ . . .≤ α(ri)

i ≤ 1.

The paradegree of such a parabolic bundle E is

paradeg E := deg(E)+∑
i

di with di :=∑
s
α(s)

i k(s)
i .

A parabolic bundle E is semi-stable if for all parabolic subbundles F of E
one has:

(rg(F))−1paradeg F ≤ (rg(E))−1paradeg E.

E is stable if “≤” can be replaced with “<”.
The paradeterminant for this parabolic structure (resp. for these weights at the

marked points) is the usual determinant detE =
∧rE tensored with the holomor-

phic line bundle given by OΣ(−∑dixi) for the divisor −∑diPi if di is an integer.
Otherwise the paradeterminant is undefined.

The second bijection in Theorem 11.7 has the following significance: one collects
those equivalence classes of parabolic vector bundles over Σ = SJ , whose weights

α(s)
i are rational and for which all d j := ∑

s
α(s)

j k(s)
j are integers. Then the α(s)

j fix

suitable conjugacy classes in SU(r) and hence a labeling through irreducible rep-
resentations R j. Conversely, given the labels R j attached to the points, only those
parabolic bundles are considered where the weights fit the labels. Now the space

M
SU(r)
J (P,R)

consists of the equivalence classes of such parabolic vector bundles, which, in ad-
dition, are semi-stable with paradegree 0 and trivial paradeterminant. For instance,

for r = 2 the representation ρ belonging to [E] ∈M
SU(2)
J (P,R) is given on the c j by

ρ(c j) =

⎧
⎪⎨

⎪⎩

exp 2πi diag
(
α(0)

j ,α(0)
j

)
for k(0)

j = 2

exp 2πi diag
(
α(0)

j ,α(1)
j

)
for k(0)

j = 1 = k(1)
j .

The moduli space M
SU(2)
J (P,R) is according to [MS80] in a one-to-one corre-

spondence to
Hom(πorb

1 (S),SU(2))
/

SU(2) .
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Furthermore,

M
SU(2)
J (P,R)

has the structure (depending on J) of a projective variety over C. In this variety,
the stable parabolic vector bundles correspond to the regular points. An analogous
theorem holds for parabolic vector bundles of rank r (cf. [MS80]).

In the case of P = /0 the moduli space

M
SU(2)
J,g (P,R) := M

SU(2)
J (P,R)

coincides with the previously introduced moduli space M
SU(2)
J (cf. Sect. 11.1). Re-

call that M
SU(2)
J has a natural line bundle L which is used to introduce the gen-

eralized theta functions or conformal blocks. This has a generalization to the case

P �= /0: M
SU(2)
J,g (P,R) possesses a natural line bundle L – the determinant bundle or

the theta bundle – together with a connection whose curvature is 2πiωM . Here, ωM

is the Kähler form on the regular locus of M
SU(2)
J,g (P,R). Now, the finite-dimensional

space of holomorphic sections

H0
(
M

SU(2)
J,g (P,R),L k

)

is the space of generalized theta functions of level k with respect to (P,R).
For our special case of the group G = SU(2) let us denote by the number n ∈ N

the (up to isomorphism) uniquely determined irreducible representation n : SU(2)→
GL(Vn) with dimCVn = n+1. With respect to the level k ∈ N only those labels R =
(n1, . . . ,nm) are considered in the following which satisfy n j ≤ k for j = 1, . . . ,m.

Theorem 11.9. (Fusion Rules)
0. zk(g;n1, . . . ,nm) := dimC H0(M SU(2)

J,g (P,R),L k) does not depend on J and on the
position of the points P1, . . . ,Pm ∈ S. Here, R = (n1, . . . ,nm). Let Mg,m be the moduli
space of marked Riemann surfaces of genus g with m points and let M g,m be the
Deligne–Mumford compactification of Mg,m. Then, the bundle π : Zg,k(R)→Mg,m

with fiber

π−1(J,P) = H0
(
M

SU(2)
J,g (P,R),L k

)

has a continuation Zg,k(R) → M g,m to Mg,m as a locally free sheaf of rank
zk(g;n1, . . . ,nm).

1. zk(g;n1, . . . ,nm) = ∑k
n=0 zk (g−1;n1, . . . ,nm,n,n).

2. For 1≤ s≤ m one has

zk(g′+g′′;n1, . . . ,nm)

=
k

∑
n=0

zk(g′;n1, . . . ,ns,n)zk(g′′;n,ns+1, . . . ,nm).
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Fig. 11.1 Fusion rule 1

The formulation of the fusion rules for SU(2) in Theorem 11.9 is special since
every representation ρ of the group SU(2) is equivalent to its conjugate represen-
tation ρ∗ (Figs. 11.1 and 11.2). For more general Lie groups G instead of SU(2),
one of the two representations (n,n) in the fusion rules has to be replaced with its
conjugate.

A proof of the fusion rules 1 and 2 in approximately this form can be found in
[NR93] together with [Ram94].

Even in the case of P = /0 it is quite difficult to show that the dimensions of

H0 (M SU(r)
J ,L k ) do not depend on the complex structure J. This can be deduced

from a stronger property which states that the spaces

H0
(
M

SU(r)
J ,L k

)

as well as
H0
(
M

SU(r)
J,g (P,R),L k

)

are essentially independent of the complex structure. This is in agreement with phys-
ical requirements since these spaces are considered to be the result of a quantization
which only depends on the topology of S or S \ P. For this reason the resulting
quantum field theory is called a topological quantum field theory (cf. [Wit89]). In
particular, the state spaces – more precisely their projectivations – should not depend
on any metric or complex structure.
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Fig. 11.2 Fusion rule 2 is defined by the successive application of 2′ and 2′′

That the above state spaces do not depend on the complex structure has been
proven in [APW91] and [Hit90] in the case of P = /0. Hitchin’s methods carry over
to the case of P �= /0 using some results of non-abelian Hodge theory [Sche92],
[ScSc95]. The strategy of the proof is to consider the bundle Zg,k(R)→Mg,m over
the moduli space Mg,m of Riemann surfaces of genus g and m marked points with

fiber H0 (M SU(r)
g,J (P,R),L k ) over (J,P) ∈ Mg,m. On this bundle Zg,k(R) one con-

structs a natural projectively flat connection. Incidentally, the existence of such a
natural projectively flat connection is again motivated by considerations from con-
formal field theory. Then the fibers of the bundle can be identified in a natural way
by parallel transport with respect to this connection up to a constant, that is they
are projectively identified. It is remarkable that in the course of the construction in
the general case of P �= /0 it seems to be necessary to use the metaplectic correction
instead of the uncorrected geometric quantization (see p. 221 and [ScSc95]).
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The case P �= /0 is significant for Witten’s program, to describe the Jones poly-
nomials of knot theory in the context of quantum field theory. In this picture, the
Zk,g(R) are quantum mechanical state spaces, which can be found by path integra-
tion [Wit89] or by geometric quantization [Sche92], [ScSc95]. To obtain the knot
invariants, one needs, in addition to these state spaces, the corresponding state vec-
tors (“propagators”) describing the time development. On the mathematical level
this means that one has to assign to a compact three-dimensional manifold M with
boundary containing labeled knots a state vector in the state space given by the
boundary of M which is a surface with marked points. For instance, one has to assign
to such a manifold M with knots K = (K1, . . . ,Ks), labeled by SU(r)-representations
and with boundary ∂M = Sg∪S′g′ , a vector Zk(M,K) in

Zk,g(R)∗ ⊗Zk,g′(R
′)∼= Hom(Zk,g(R),Zk,g′(R

′)).

The points in Sg, S′g′ and the labels R, R′ are induced by the knots K1, . . . ,Ks,
which may run from boundary to boundary. Only the state spaces together with the
state vectors yield a topological quantum field theory. A rigorous construction of
these state vectors – which are given by path integration in [Wit89] – is still not
known. In the meantime, instead of Witten’s original program, other constructions
of topological quantum field theories – in some cases by using quantum groups –
have been proposed (cf., e.g., [Tur94]) and yield interesting invariants of knots and
three manifolds. Related developments are presented in [BK01*].

11.4 Combinatorics on Fusion Rings: Verlinde Algebra

Using the fusion rules of Sect. 11.3, the proof of the Verlinde formula can be reduced
to the determination of

zk(0;n),zk(0;n,m),zk(0;n,m, l)

for n,m, l ∈ {0, . . . ,k}. This combinatorical reduction has an algebraification, which
also has a meaning for more general groups than SU(r) (cf. [Bea96], [Bea95],
[Sze95]).

Definition 11.10 (Fusion Algebra). Let F be a finite-dimensional complex vector
space with an element 1 ∈ F . For every g ∈ Z,g≥ 0 and v1, . . . ,vm ∈ F let

Z(g)v1,...,vm ∈ C

be given. (F,1,Z) is a fusion ring if the following fusion rules hold:

(F1) Z(g)1,...,1 = 1.
(F2) Z(g)v1,...,vm = Z(g)1,v1,...,vm does not depend on the order of the v1, . . . ,vm.
(F3) v→ Z(0)v1,...,v j ,v,v j+1,...,vm is C-linear.
(F4) (v,w)→ Z(0)v,w is not degenerated.
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We use the notation
∫

v := Z(0)v, 〈v,w〉 := Z(0)v,w and η(v,w,u) := Z(0)v,w,u.

Let (b j),(b j) be a pair of bases with δ i
j = 〈b j,bi〉. Then, additionally, the follow-

ing rules hold

(F5) Z(g)v1,...,vm = ∑Z(g−1)b j ,b j ,v1,...,vm
, g≥ 1 (Fusion 1).

(F6) Z(g+g′)v1,...,vm,v′1,...,v′m = ∑Z(g)v1,...,vm,b j Z(g′)b j ,v′1,...,v′m
, (Fusion 2).

One easily proves

Lemma 11.11. The product v ·w := ∑η(v,w,b j)b j for v,w ∈ F induces on F the
structure of a commutative and associative complex algebra with 1.

Lemma 11.12. The bilinear form 〈,〉 satisfies the trace condition 〈v ·w,x〉 = 〈v,w ·
x〉. Therefore, F is a Frobenius algebra.

Proof. 〈v ·w,x〉 = ∑η(v,w,bi)〈bi,x〉 by definition and linearity. Thus 〈v ·w,x〉 =
η(v,w,x), since x = bi〈bi,x〉. In the same way, we obtain 〈v,w · x〉 = 〈w · x,v〉 =
η(w,x,v) = η(v,w,x) by (F2). �

Both results need the axioms for g = 0 only. With similar arguments one can
prove the following version of the Verlinde formula using the fusion rules for gen-
eral g.

Lemma 11.13. With α := ∑b jb j = ∑η(bi,bi,bk)bk ∈ F the abstract Verlinde for-
mula holds:

Z(g)v1,...,vm =
∫
αgv1 · . . . · vm.

Proof. By induction on m we show

Z(g)v1,...,vm = Z(g)v1·...·vm .

The case m = 1 is trivial. For m≥ 2 we have

Z(g)v1,...,vm = ∑Z(0)v1,v2,b j Z(g)b j ,v3,...,vm
by(F6)

= ∑η(v1,v2,b j)Z(g)b j ,v3,...,vm

= Z(g)∑η(v1,v2,b j)b j ,v3,...,vm
by(F3)

= Z(g)v1·v2,v3,...,vm by the definition of the product

= Z(g)v1·v2·v3·...·vm by the induction hypothesis.

This implies

Z(g)v =∑Z(g−1)b j ,b j ,v = Z(g−1)∑b jb jv = Z(g−1)αv
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and
Z(g)v = Z(g−1)αv = Z(g−2)α2v = Z(0)αgv.

Hence for v = v1 · . . . · vm the claimed statement follows. �

For the derivation of the Verlinde formula (Theorem 11.6) from the fusion rules
using Lemma 11.13 we refer to [Sze95], where general simple Lie groups instead
of SU(2) are treated.

To indicate the role of the above formula as an abstract Verlinde formula let us
represent F as the algebra of functions on the spectrum Σ= Spec F , that is the finite
set of algebra homomorphisms h : F →C satisfying, in particular, h(1) = 1. With the
aid of the Gelfand map v �→ v̂, v̂(h) = h(v), we identify F and the function algebra
Map(Σ). The structure map Z(0) : F → C induces on F = Map(Σ) a complex mea-
sure μ which is given by a map μ : Σ→C. We have Z(0)v =

∫
vdμ =∑h∈Σ v(h)μ(h)

and conclude 1 = Z(0)1 =
∫

dμ = ∑μ(h) and μ(h) �= 0 for all h ∈ Σ.
In order to determine the element α ∈ F from Lemma 11.13 one uses the char-

acteristic functions eh of the points h ∈ Σ as a basis: eh(k) = δh,k. The dual basis eh

is given by eh = μ(h)−1eh because of

〈eh,e
h〉= Z(0)eh,eh =

∫
ehehdμ = μ(h).

Therefore, α = ∑μ(h)−1eh and αg = ∑μ(h)−geh. Inserting this term into the
abstract Verlinde formula in 11.13 gives

∫
αgdμ =∑μ(h)−gμ(h) =∑μ(h)1−g.

Hence, for Z(g) = Z(g)1 we obtain the following formula which is much closer
in its appearance to the Verlinde formula (11.2).

Lemma 11.14.
Z(g) = ∑

h∈Σ
(μ(h))g−1.

The fusion rules have their origin in the operator product expansion (cf. p. 168).
In the case of the conformal field theory associated to a simple Lie group G (like
SU(2) as considered above) the fusion rules are also related to basic properties of
the group and its representations. In fact, the fusion rules have a manifestation in
the tensor product of representations of G and the fusion algebras considered above
turn out to be isomorphic to certain quotients of the representation ring R(G). These
quotients are called Verlinde algebras (cf. [Wit93*]).

We describe the Verlinde algebra Vk(G) explicitly in the case of the group G =
SU(2). The representation ring R(G), that is the ring of (isomorphism classes of)
finite-dimensional representations of G with the tensor product as multiplication, is
in the case of G = SU(G) generated by the standard two-dimensional representation
V1. All other irreducible representations are known to be isomorphic to some Vm

where Vm is the symmetric product:
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Vm := V�m
1 = V1� . . .�V1.

Vm is the (m+1)-dimensional irreducible representation of SU(2), unique up to
isomorphism, in particular, V0 is the trivial one-dimensional representation. Let bn

denote the isomorphism class of Vn in R(SU(2)) (denoted by n in the last section).
We regard R(SU(2)) as a vector space over C and observe that (b j) is a basis of
R(SU(2)). In particular, R(G) is an algebra over C.

The multiplication “×” on R(G) induced by the tensor product is given by the
Clebsch–Gordan formula

Vm⊗Vn
∼= Vm+n⊕Vm+n−2⊕ . . .⊕V|m−n|.

Hence, on R(G) we have

bm+p×bm =
m

∑
j=0

b2m+p−2 j.

The truncated multiplication of level k ∈ N is

bm+p ·bm = bm+p×bm, if 2m+ p≤ k,

and

bm+p ·bm =
m

∑
j≥2m+p−k

b2m+p−2 j = b2k−2m−p + . . .+bp,

if 2m+ p > k and m+ p≤ k. The definition implies that no terms bn with n > k can
appear in the summation on the right-hand side. The resulting algebra, the Verlinde
algebra Vk(SU(2)) of level k, is the quotient R(G)/(bk+1) with respect to the ideal
(bk+1) generated by bk+1 ∈ R(G). It is a Frobenius algebra and a fusion algebra in
the sense of Definition 11.10. It describes the fusion in the level k case for SU(2).

The Verlinde algebra has a direct description with respect to the basis b0, . . . ,bk

in the form

bi ·b j =
k

∑
m=0

Nm
i j bm

with coefficients Nm
i j ∈ {0,1}.

Now, the homomorphisms of Vk(SU(2)) can be determined using the fact that all
complex homomorphisms on R(SU(2)) have the form

hz(bn) =
sin(n+1)z

sinz
,

where z ∈ C is a complex number. Such a homomorphism hz vanishes on (bk+1) if
sin(k + 2)z = 0. We conclude that the homomorphisms of Vk(SU(2)) are precisely
the k +1 maps hp : Vk(SU(2))→ C satisfying

hp(b j) =
sin( j +1)zp

sinzp
,zp =

pπ
k +2

, p = 1, . . . ,k +1.



232 11 Mathematical Aspects of the Verlinde Formula

Using

Z(0)b j =
∫

b j =
k+1

∑
n=1

b j(hn)μ(hn),

an elementary calculation yields

μ(hn) =
2

k +2
sin2 nπ

k +2
,n = 1, . . . ,k +1,

from which the Verlinde formula (11.2) follows by Lemma 11.14.
Recently, a completely different description of the Verlinde algebra using equiv-

ariant twisted K-theory has been developed by Freed, Hopkins, and Teleman
[FHT03*] (see also [Mic05*], [HJJS08*]).
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HJJS08*. Husemöller, D., Joachim, M., Jurco, B., Schottenloher, M.: Basic Bundle Theory and

K-Cohomological Invariants. Lect. Notes Phys. 726. Springer, Heidelberg (2008) 232
Kac90. V. Kac. Infinite Dimensional Lie Algebras. Cambridge University Press, Cambridge,

3rd ed., 1990. 221
Kir76. A. A. Kirillov. Theory of Representations. Springer Verlag, Berlin, 1976. 218
KNR94. S. Kumar, M. S. Narasimhan, and A. Ramanathan. Infinite Grassmannians and moduli

spaces of G-bundles. Math. Ann. 300 (1994), 41–75. 218
MS80. V. Mehta and C. Seshadri. Moduli of vector bundles on curves with parabolic structures.

Ann. Math. 248 (1980), 205–239. 222, 223, 224, 225



References 233

Mic05*. J. Mickelsson. Twisted K Theory Invariants. Letters in Mathematical Physics 71
(2005), 109–121. 232

MS89. G. Moore and N. Seiberg. Classical and conformal field theory. Comm. Math. Phys.
123 (1989), 177–254. 219

NR93. M.S. Narasimhan and T. Ramadas. Factorization of generalized theta functions I. In-
vent. Math. 114 (1993), 565–623. 219, 226

NS65. M.S. Narasimhan and C. Seshadri. Stable and unitary vector bundles on a compact
Riemann surface. Ann. Math. 65 (1965), 540–567. 215, 223

Ram94. T. Ramadas. Factorization of generalized theta functions II: The Verlinde formula.
Preprint, 1994. 219, 226

Sche92. P. Scheinost. Metaplectic quantization of the moduli spaces of at and parabolic bundles.
Dissertation, LMU München, 1992. 221, 227, 228

ScSc95. P. Scheinost and M. Schottenloher. Metaplectic quantization of the moduli spaces of at
and parabolic bundles. J. Reine Angew. Math. 466 (1995), 145–219. 221, 227, 228

Sor95. C. Sorger. La formule de Verlinde. Preprint, 1995. (to appear in Sem. Bourbaki, année
1994–95, no 793) 219

Sze95. A. Szenes. The combinatorics of the Verlinde formula. In: Vector Bundles in Al-
gebraic Geometry, Hitchin et al. (Eds.), 241–254. Cambridge University Press,
Cambridge, 1995. 219, 228, 230

TUY89. A. Tsuchiya, K. Ueno, and Y. Yamada. Conformal field theory on the universal family
of stable curves with gauge symmetry. In: Conformal field theory and solvable lattice
models. Adv. Stud. Pure Math. 16 (1989), 297–372. 213, 219

Tur94. V.G. Turaev. Quantum Invariants of Knots and 3-Manifolds. DeGruyter, Berlin, 1994. 228
Tyu03*. A. Tyurin. Quantization, Classical and Quantum Field Theory and Theta Functions,

CRM Monograph Series 21 AMS, Providence, RI, 2003. 213
Uen95. K. Ueno. On conformal field theory. In: Vector Bundles in Algebraic Geometry, N.J.

Hitchin et al. (Eds.), 283–345. Cambridge University Press, Cambridge, 1995. 213
Ver88. E. Verlinde. Fusion rules and modular transformations in two-dimensional conformal

field theory. Nucl. Phys. B 300 (1988), 360–376. 213, 219
Wit89. E. Witten. Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121

(1989), 351–399. 214, 216, 226, 228
Wit93*. E. Witten. The Verlinde algebra and the cohomology of the Grassmannian. hep-

th/9312104 In: Geometry, Topology and Physics, Conf. Proc.Lecture Notes in Geom.
Top, 357–422. Intern. Press, Cambridge MA (1995). 230

Woo80. N. Woodhouse. Geometric Quantization. Clarendon Press, Oxford, 1980. 216, 217



Appendix A
Some Further Developments

Due to the character of these notes with the objective to present and explain the basic
principles of conformal field theory on a mathematical basis in a rather detailed
manner there has been nearly no room to mention further developments.

In this appendix we concentrate on boundary conformal field theory (BCFT) and
on stochastic Loewner evolution (SLE) as two developments which lead to new
structures not being part of conformal field theory (CFT) as described in these notes
but strongly connected with CFT.

We only give a brief description and some references.

Boundary Conformal Field Theory. Boundary conformal field theory is essen-
tially conformal field theory on domains with a boundary. As an example, let us
consider strings moving in a background Minkowski space M as in Chap. 7. For
a closed string, that is a closed loop moving in M, one gets a closed surface. Af-
ter quantization one obtains the corresponding CFT on this surface as developed in
Chap. 7. In case of an open string, that is a connected part of a closed loop (which is
the image of an interval under an injective embedding) with two endpoints, the string
weeps out an open surface or better a surface with boundary. The boundary is given
by the movement of the two endpoints of the string. We obtain the corresponding
CFT in the interior of the surface, the bulk CFT, together with compatibility condi-
tions on the boundary of the surface.

BCFT has important applications in string theory, in particular, in the physics of
open strings and D-branes (cf. [FFFS00b*], for instance), and in condensed matter
physics in boundary critical behavior.

BCFT is in some respect simpler than CFT. For instance, in the case of the upper
half plane H with the real axis as its boundary one possible boundary condition
is that the energy–momentum tensor T satisfies T (z) = T (z). This implies that the
correlation functions of T are the same as those of T , analytically continued to the
lower halfplane. This simplifies among other things the conformal Ward identities.
Moreover, there is only one Virasoro algebra.

For general reviews on BCFT we refer to [Zub02*] and [Car04*]. See also
[Car89*] and [FFFS00a*].

Stochastic Loewner Evolution. There is a deep connection between BCFT and
conformally invariant measures on spaces of curves in a simply connected domain

Schottenloher, M.: Some Further Developments. Lect. Notes Phys. 759, 235–237 (2008)
DOI 10.1007/978-3-540-68628-6 13 c© Springer-Verlag Berlin Heidelberg 2008



236 A Some Further Developments

H in C which start at the boundary of the domain. This has been indicated in both the
survey articles of Cardy [Car04*] on BCFT and [Car05*] on SLE and in a certain
sense already in [LPSA94]. Such measures arise naturally in the continuum limit of
certain statistical mechanics models.

For instance, in the case of the upper half plane H a measure of this type can be
constructed using a family of conformal mappings gt , t ≥ 0. In such a construction
one uses the stochastic Loewner evolution (SLE) first described by [Schr00*]. More
precisely, for a constant κ ∈ R, κ ≥ 0, the so-called SLEκ curve γ : [0,∞[→ C in
the upper half plane H is generated as follows: γ : [0,∞[→ C is continuous with
γ(0) = 0 and γ(]0,∞[) ⊂ H. γ is furthermore determined by the unique conformal
diffeomorphism

gt : H \ γ(]0, t])→ H, t ≥ 0,

satisfying the Loewner equation

∂gt(z)
∂ t

=
2

gt(z)−
√
κbt

, g0(z) = z,

normalized by the condition gt(z) = z + o(1) for z → ∞. Here, bt , t ≥ 0, is an or-
dinary brownian motion starting at b0 = 0. Hence, γ(t) = γt is precisely the point
satisfying g∼t (γt) =

√
κbt for the continuous extension g∼t of gt to H \ γ(]0, t[) that

is into the boundary point γ(t) of H \ γ(]0, t[).
A comprehensive introduction to SLE is given in Lawler’s book [Law05*]. A

first exact application to the critical behavior of statistical mechanics models can be
found in [Smi01*].

The relation of SLE to CFT is not easy to detect. It has been uncovered in the
articles [BB03*] and [FW03*].

Modularity. Modularity properties have been studied in the articles on vertex alge-
bras and CFT from the very beginning, in particular with respect to the examples of
large finite simple groups (see [Bor86*] and [FLM88*], for instance). A compre-
hensive survey can be found in [Gan06*].
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